Acyl radical-mediated polyene cyclisations directed towards steroid ring synthesis

Andrei Batsanov, Ligong Chen, G. Bryon Gill and Gerald Pattenden*
Department of Chemistry, Nottingham University, Nottingham NG7 2RD, UK

Abstract

Treatment of appropriately substituted $S e$-phenyl 5,9,13-triene- and 5,9,13,17-tetraene-selenoates, i.e $\mathbf{9 b}, 33,40,47 \mathrm{a}$ and 47 b , with $\mathrm{Bu}_{3} \mathrm{SnH}-\mathrm{AIBN}$ is found to lead to angular six-ring fused polycycles, viz. $20,34,50,53$ and 54 respectively, via consecutive 6 -endo-trig modes of cyclisations, starting from the corresponding polyene acyl radical intermediates. The structures and stereochemistries of the polycyclic products were determined largely from detailed analysis and correlation of ${ }^{13} \mathrm{C}$ NMR spectroscopic data. The trans-anti-trans stereochemistry of the tricyclic ketone 50 was established from X-ray analysis of a solid solution of a $1: 1$ mixture of ring C methyl epimers of the corresponding 2,4-dinitrophenylhydrazone derivative.

In the preceding paper we summarised the outcome of our studies of a new and direct synthetic approach to decalone and to perhydrophenanthrone ring constructions, based on serial 6 -endo-trig radical cyclisations initiated from 5,9-diene acyl radical intermediates, viz. $\mathbf{1 \rightarrow 2 .}{ }^{1}$ Furthermore, in the same paper we highlighted the importance of alkyl group substitution and stereochemistry of the various alkene double bonds, in determining the regio- and stereo-chemical outcome of these cascade polyene radical cyclisations. In this paper we summarise the extensions of these studies, and show how acyl/alkyl radical cyclisations of polyolefin-selenoates, under clean reductive conditions in the presence of $\mathrm{Bu}_{3} \mathrm{SnH}-\mathrm{AIBN}$, can lead to linear and angular six-membered fused polycycles, including steroid ring systems, via regio- and stereo-specific consecutive 6 -endo-trig modes of cyclisation.

We began the extensions of our earlier studies by first examining the cyclisations of the $S e$-phenyl tri- and tetraeneselenoates 9a and 13, respectively, which were devoid of methyl group substitution on their various olefin double bonds. The ($5 Z, 9 E$)-9a and $(5 Z, 9 E, 13 E)$ - 13 isomers of the selenoates were synthesised using methods and conditions developed in earlier studies, and described in the immediately preceding paper. The procedures are shown in outline in Scheme 1.

In accord with the outcome of our earlier studies with $5 E$ and $5 Z$-isomers of polyeneselenoates lacking methyl group substitution at $\mathrm{C}-9$, viz. $\mathbf{1 4} \rightarrow \mathbf{1 5},{ }^{1}$ treatment of the $S e$-phenyl selenoates 9 a and 13 with $\mathrm{Bu}_{3} \mathrm{SnH}-\mathrm{AIBN}$ led largely to diastereoisomeric mixtures of the corresponding indanone products $16(\sim 65 \%)$ and $17(\sim 75 \%)$ resulting from consecutive 6 -endo, 5 -exo trigonal cyclisations. No evidence for the coformation of products, e.g. 18 and 19, resulting from consecutive 6 -endo tri- or tetra-cyclisations respectively could be secured from these studies.

By contrast, when the 9 -methyl substituted trieneselenoate analogue $\mathbf{9 b}$ was treated with $\mathrm{Bu}_{3} \mathrm{SnH}-\mathrm{AIBN}$, under the same conditions, the major product isolated was a mixture of diastereoisomers of the angular-fused 6,6,6-ring ketone 20 ($\sim 60 \%$), together with smaller amounts of the substituted indanone 21 and the cyclopentanone 22. In addition, the related 9 -methyl substituted trieneselenoates 26 and 33, whose syntheses are summarised in Schemes 2 and 3, also underwent

Scheme 1 Reagents: i, Mg, then $\mathrm{CH}_{2}=\mathrm{C}(\mathrm{R}) \mathrm{CHO}$; ii, $(\mathrm{EtO})_{3} \mathrm{CMe}$, $\mathrm{EtCO}_{2} \mathrm{H}$; iii, LiAlH_{4}; iv, PCC, $\mathrm{CH}_{2} \mathrm{Cl}_{2} ; \mathrm{v}, \mathrm{HO}_{2} \mathrm{C}\left(\mathrm{CH}_{2}\right)_{4} \stackrel{+}{\mathrm{P}} \mathrm{Ph}_{3} \mathrm{Br}^{-}$, DMSO-NaH; vi, $\mathrm{Ph}_{2} \mathrm{Se}_{2}, \mathrm{PBu}_{3}$; vii, $\mathrm{CH}_{2}=\mathrm{CHMgBr}$

Scheme 2 Reagents: i, Mg , then $\mathrm{H}_{2} \mathrm{C}=\mathrm{C}(\mathrm{Me}) \mathrm{CHO}$; ii, $(\mathrm{EtO})_{3} \mathrm{CMe}$, $\mathrm{EtCO}_{2} \mathrm{H}$; iii, $\mathrm{LiAlH}_{4} ;$ iv, $\mathrm{PCC}, \mathrm{CH}_{2} \mathrm{Cl}_{2} ; \mathrm{v}, \mathrm{HO}_{2} \mathrm{C}\left(\mathrm{CH}_{2}\right)_{4} \stackrel{+}{\mathrm{P}} \mathrm{Ph}_{3} \mathrm{Br}^{-}$, $\mathrm{NaH}-\mathrm{DMSO} ;$ vi, $\mathrm{Ph}_{2} \mathrm{Se}_{2}, \mathrm{PBu}_{3}$

Scheme 3 Reagents: i, $\mathrm{H}_{2} \mathrm{C}=\mathrm{C}(\mathrm{Me}) \mathrm{MgBr}$; ii, $\mathrm{EtOCH}=\mathrm{CH}_{2}, \mathrm{Hg}(\mathrm{OAc})_{2}$, heat; iii, $\mathrm{HO}_{2} \mathrm{C}\left(\mathrm{CH}_{2}\right)_{4} \stackrel{+}{\mathrm{P}} \mathrm{Ph}_{3} \mathrm{Br}^{-}$, $\mathrm{NaH}-\mathrm{DMSO} ;$ iv, $\mathrm{Ph}_{2} \mathrm{Se}_{2}, \mathrm{PBu}_{3}$
successful consecutive 6 -endo-trig cyclisations leading to the angular fused tricycles 27 (31%) and 34 (31\%) respectively. In each instance the formation of 27 and 34 was accompanied by varying amounts of the indanone products $28(\sim 37 \%)$ and $35(47 \%)$ respectively, produced via competing 6 -endo, 5 -exo trig modes of cyclisation from the polyene acyl radical precursors. The structures and stereochemistries assigned to the polycyclic products 27, 28, 34 and 35 followed from inspection and analysis of their ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR data, together with comparison and correlation with data for similar compounds described in the literature. These analyses and correlations are discussed at the end of this paper.

The aforementioned studies provided us with an insight and an appreciation of the importance of methyl group substitution on the various double bonds in determining the regiochemical outcome of the various polyene cyclisations. They also led us to our final series of polyene-selenoates for investigation, i.e. those 5,9,13-trienes 40, 47a and 47b containing methyl group substitution on their C-5, C-9 and C-13 centres. The all- E isomers of the three $S e$-phenyl selenoates 40, 47a and 47b were all prepared via similar routes, using a series of Claisen rearrangements, to establish the geometries of the various trisubstituted double bonds (see Schemes 4 and 5).
Treatment of the Se -phenyl trieneselenoate 40 with $\mathrm{Bu}_{3} \mathrm{SnH}-$ AIBN produced a $1: 1$ mixture of the epimeric tricyclic ketones 50 and 51 in approximately 55% yield, accompanied by a smaller amount ($c a .18 \%$) of the indanone 52 . Although we were frustrated in our attempts to separate the epimers 50 and 51 by chromatography, we were able to produce a satisfying

Scheme 4 Reagents: $\mathrm{i}, \mathrm{H}_{2} \mathrm{C}=\mathrm{C}(\mathrm{Me}) \mathrm{MgBr}$; ii, $\mathrm{EtOCH}=\mathrm{CH}_{2}, \mathrm{Hg}(\mathrm{OAc})_{2}$,
 $\mathrm{MeOH} ;$ vi, $\mathrm{Ph}_{2} \mathrm{Se}_{2}, \mathrm{PBu}_{3}$

Scheme 5 Reagents and conditions: i, $\mathrm{EtOCH}=\mathrm{CH}_{2}, \mathrm{Hg}(\mathrm{OAc})_{2}$, heat; ii, $\mathrm{H}_{2} \mathrm{C}=\mathrm{C}(\mathrm{Me}) \mathrm{MgBr}$; iii, $\mathrm{MeOCH}_{2} \mathrm{PPh}_{3} \mathrm{Cl}^{-}, \mathrm{LiN}\left(\mathrm{SiMe}_{3}\right)_{2}$; iv, PCC , $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, v, $\mathrm{K}_{2} \mathrm{CO}_{3}-\mathrm{MeOH}$; vi, $\mathrm{Ph}_{2} \mathrm{Se}_{2}, \mathrm{PBu}_{3}$
crystalline sample of a mixture of epimers of the corresponding 2,4-dinitrophenylhydrazone derivative for X-ray analysis. We were pleased to find that the X-ray analysis indicated a solid solution of the two epimers $\mathbf{5 0}$ and $\mathbf{5 1}$ of the tricyclic ketone with trans-anti-trans stereochemistry in a ratio of approximately 1:1 (Fig. 1).

Finally, when the $S e$-phenyl tetraeneselenoates 47 a and 47b were treated with $\mathrm{Bu}_{3} \mathrm{SnH}-\mathrm{AIBN}$, they both underwent

Fig. 1 Molecular structure of 1 , showing two positions of the disordered methyl group
extraordinarily clean, and regio- and stereo-specific, triscyclisations leading to the all-trans isomers of the corresponding tetracycles, 53 and 54, respectively, in yields of $60-80 \%$. Each of the tetracyclic ketones 53 and 54 was produced as a mixture of ring D methyl epimers, but their structures and stereochemistries followed from analysis of their NMR data, and correlation of these data with those recorded for literature compounds and similar ring systems produced in this study. These important and determining NMR studies will now be described.

Structural assignments of polycycles

The highfield ${ }^{1} \mathrm{H}$ NMR spectra of the polycyclic ketones prepared in this paper and the accompanying paper ${ }^{1}$ were

55

57
complex and, because of the superposition of many of the signals, could only be partially assigned even with the aid of the various modern irradiation techniques. Hence, the results were not sufficiently unambiguous for the precise definition of the stereochemistry of these systems. However, it has been shown that ${ }^{13} \mathrm{C}$ NMR shift data may be used, in a relatively simple way, for structural and stereochemical assignments in alicyclic systems. ${ }^{2}$ The effective use of ${ }^{13} \mathrm{C}$ NMR requires an extensive data collection for suitable model systems and, fortunately, such a compilation exists for cis- and trans-bicyclo[4.4.0]decanes. ${ }^{2}$
The validity of the use of $\Delta \delta_{\mathrm{C}}$ effects for substituents in the ring systems prepared in our study was first tested in the assignment of the ${ }^{13} \mathrm{C}$ NMR shifts for trans,anti,trans-perhydrophenanthren-1-one, ${ }^{1}$ a compound of known stereochemistry. Thus, the ${ }^{13} \mathrm{C}$ shifts for trans,anti,trans-perhydrophenanthrene are shown in formula $55 .{ }^{3}$ This molecule may be considered as a $2_{e q}, 3_{e q}$-butano-trans-bicyclo[4.4.0]decane (N.B. $e q=$ equatorial). The ${ }^{13} \mathrm{C}$ shifts for the various carbon atoms in trans-bicyclo[4.4.0]decane are given in 56, ${ }^{2}$ and the $\Delta \delta$ effects arising from transposing 56 to 55 are then shown in formula 57 . The $\Delta \delta$ values (which are usually small beyond the γ-carbon atom) may now be used to estimate the effect of the $7_{\text {eq }}, 8_{e q}$-butano-fusion onto trans-bicyclo[4.4.0]decan-2-one $58{ }^{2}$ to give trans, anti,trans-perhydrophenanthren-1-one. These estimated values are now shown in formula 59a, and the experimentally determined ${ }^{13} \mathrm{C}$ shifts are given in $\mathbf{5 9 b}$. There is very close agreement between calculated and experimental values, which mostly lie within the range $\Delta \delta \pm 0.5 \mathrm{ppm}$, with the largest differences being +0.7 ppm .

Assignment of the ${ }^{13} \mathrm{C}$ NMR shifts for trans,anti,trans-perhydrophenanthren-1-one 59 now allows this molecule to be used as a model for calculations in the methyl-substituted tri- and tetra-cyclic ketone systems (viz. 20, 34), assuming a trans,anti,trans ring-fusion stereochemistry. Thus, 59 can alternatively be considered as arising from the $2_{e q}, 3_{e q}$-fusion of the $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}$ moiety onto trans-bicyclo[4.4.0] decane 56, giving rise to a new set of $\Delta \delta_{\mathrm{C}}$ effects shown in formula $\mathbf{6 0}$. These $\Delta \delta_{\mathrm{C}}$ values can then be used to estimate the effect on the ${ }^{13} \mathrm{C}$ shifts of methyl-substituted trans-bicyclo[4.4.0]decanes in their transformation into methyl-substituted trans,anti,trans-perhydrophenanthren-1-ones arising from the similar fusion of the $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}$ moiety. Thus, the hypothetical transform-

56

58

J. Chem. Soc., Perkin Trans. 1

60

61

62a
62b

65b

606
ation of $1,2_{e q}$-dimethyl-trans-bicyclo[4.4.0]decane 61^{2} into the required trans,anti,trans-dimethylperhydrophenanthren-1-one gives rise to the calculated shifts shown in formula 62a. The experimentally observed ${ }^{13} \mathrm{C}$ shifts shown in 62 b are for the major isomer of $\mathbf{2 0}$ resulting from the tandem radical cyclisation from 9b. Agreement between the calculated and observed shifts are remarkably good, and all lie within $\Delta \delta \pm 1.2$ ppm . In order to calculate the ${ }^{13} \mathrm{C}$ NMR shifts for the minor isomer of 20 , which has an $8_{a x}$ - rather than an $8_{e q}$-methyl substituent, it was first necessary to calculate the ${ }^{13} \mathrm{C}$ shifts for
$1,2_{a x}$-dimethyl-trans-bicyclo[4.4.0]decane (N.B. $a x=$ axial). This was achieved by correlations using 56 and 1-methyl- and $2_{a x}$-methyl-trans-bicyclo[4.4.0]decanes as model systems. ${ }^{2}$ Incorporating the $\Delta \delta_{\mathrm{C}}$ effects due to the appropriate fusion of the $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}$ moiety then led to the calculated shifts shown in 63 a . The experimentally observed ${ }^{13} \mathrm{C}$ shifts for the minor stereoisomer from the aforementioned tandem radical cyclisation are given in 63b. Differences between 63a and b are all within $\Delta \delta_{\mathrm{C}} \pm 1.3 \mathrm{ppm}$, which is a remarkable result in view of the length of the correlation procedure. A unique resonance
for C-9 was not found in the ${ }^{13} \mathrm{C}$ NMR spectrum, and is tentatively assigned as $\delta_{\mathrm{C}} 37.2$, coinciding with the signal for the major isomer 62b.

Shift differences for individual carbon atoms in the comparison of trans- and cis-bicyclo[4.4.0]decan-2-ones can be as high as $\Delta \delta_{\mathrm{C}}=-4.4 \mathrm{ppm}$, with an average $\Delta \delta_{\mathrm{C}}=-2.3 \mathrm{ppm}$. Differences for individual carbon atoms in the comparison of trans- and cis-bicyclo[4.4.0]decanes can be as high as $\Delta \delta_{\mathrm{C}}=$ -8.5 ppm , with an average $\Delta \delta_{\mathrm{C}}=-4.7 \mathrm{ppm}$. These large differences would be expected to translate into similar differences in the ${ }^{13} \mathrm{C}$ shifts for all-trans- and the various cisperhydrophenanthrenes and cis-perhydrophenanthren-1-ones. Hence, the excellent agreement between the calculated shifts for 62a and 63a, and the observed values shown in 62b and 63b, can be taken as firm evidence that the presumed trans,anti,trans stereochemistry in the products of the above cascade radical cyclisation is correct.

Correlations of the type outlined above were also applied in the calculation of the ${ }^{13} \mathrm{C}$ shifts of some of the other ketonic products (viz. 34) arising from this study and also of those (formulae 64a and 67a) produced in the immediately preceding paper. The results are summarised in formulae 64a-67a (calculated) and 64b-67b (observed). In our calculation for 67a we used the published ${ }^{13} \mathrm{C}$ shifts for trans-7-methoxy$1,2,3,4,4 \mathrm{a}, 9,10,10 \mathrm{a}$-octahydrophenanthrene. ${ }^{4}$ In the homoestrone system ${ }^{1} 67 \mathrm{a} / \mathrm{b}$ there is excellent agreement for all carbon atoms other than C-14 (steroid numbering) where $\Delta \delta_{\mathrm{C}}=+2.7 \mathrm{ppm}$.

We have been unable to use these correlation procedures for all of the ketonic products produced in our cascade studies because of the lack of literature data for suitable model systems. The effects of multiple methyl substitution is particularly difficult to estimate with accuracy. However, the independent establishment of the trans,anti,trans-stereochemistry of the ketones $\mathbf{5 0}$ and $\mathbf{5 1}$ by X-ray structure analysis lends weight to the above assignments based on ${ }^{13} \mathrm{C}$ shifts. Stereochemical assignments for the indanone products produced in our studies (e.g. 17 and 21) should be taken as tentative at this stage. We hope to clarify the stereochemical problems still outstanding through our continuing efforts in this area. ${ }^{5}$

Experimental

General experimental details and synthetic procedures used in this study are given in the preceding paper. ${ }^{1}$

Octa-1,7-dien-3-ol 4a. ${ }^{6}$ The alcohol was prepared from acrolein and the Grignard reagent derived from 5-bromopent1 -ene (52%) following the same procedure used to synthesise 2-methylocta-1,7-dien-3-ol 4b. ${ }^{1}$ It showed $v_{\max } / \mathrm{cm}^{-1}$ (film) 3361 br (OH), 3077, 2978, 2934, 2860, 1641, 1424, 992 and 913; $\delta_{\mathrm{H}} 5.94-5.72(\mathrm{~m}, 2 \times=\mathrm{CH})$, $5.25-4.92\left(\mathrm{~m}, 2 \times=\mathrm{CH}_{2}\right)$, 4.14-4.06 (m, CHO), $2.25(\mathrm{br} \mathrm{s}, \mathrm{OH}), 2.17-1.98\left(\mathrm{~m}, \mathrm{CH}_{2}\right)$ and $1.70-1.30\left(\mathrm{~m}, 2 \times \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}} 141.1(=\mathrm{CH}), 138.5(=\mathrm{CH}), 114.5_{4}$ $\left(=\mathrm{CH}_{2}\right), 114.5_{0}\left(=\mathrm{CH}_{2}\right), 73.0(\mathrm{CHOH}), 36.3\left(\mathrm{CH}_{2}\right), 33.5\left(\mathrm{CH}_{2}\right)$ and $24.5\left(\mathrm{CH}_{2}\right)$.

Deca-4,9-dienal 7a. Ethyl (4E)-deca-4,9-dienoate 5a ${ }^{7}$ was first prepared $(85 \%$) from the alcohol 4a according to the
general procedure ${ }^{1}$ and showed $\delta_{\mathrm{H}} 5.79$ (ddt, J17.1, 10.3 and 6.7, $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 5.50\left(2 \times \mathrm{dt}, J 15.3,6.1\right.$ and $5.3, E-\mathrm{CH}_{2}-$ $\mathrm{CH}=\mathrm{CHCH}_{2}$), $4.98(\mathrm{ddt}, J 17.1, \mathrm{CH}=\mathrm{CHH}), 4.93$ (ddt, $J 10.3$, $\mathrm{CH}=\mathrm{CH} H), 4.11\left(\mathrm{q}, J 7.1, \mathrm{OCH}_{2}\right), 2.37-2.27\left(\mathrm{~m}, 2 \times \mathrm{CH}_{2}\right)$, 2.06-1.96 (m, $2 \times \mathrm{CH}_{2}$), 1.46-1.39 (m, CH_{2}) and $1.24(\mathrm{t}$, J 7.1, CH_{3}). The E-stereochemistry was confirmed by NOE experiments: $\delta_{\mathrm{C}} 173.3(\mathrm{CO}), 138.8(=\mathrm{CH}), 131.4(=\mathrm{CH}), 128.5$ $(=\mathrm{CH}), 114.5\left(=\mathrm{CH}_{2}\right), 60.3\left(\mathrm{OCH}_{2}\right), 34.5\left(\mathrm{CH}_{2}\right), 33.2\left(\mathrm{CH}_{2}\right)$, $31.9\left(\mathrm{CH}_{2}\right), 28.7\left(\mathrm{CH}_{2}\right), 28.0\left(\mathrm{CH}_{2}\right)$ and $14.3\left(\mathrm{CH}_{3}\right)$; the Z isomer was not detected by ${ }^{13} \mathrm{C}$ NMR. Reduction of the ester 5 a using lithium aluminium hydride next produced deca-4,9-dien-$1-\mathrm{ol} 6 \mathrm{a}(74 \%),{ }^{8}$ an oil showing $v_{\max } / \mathrm{cm}^{-1}$ (film) $3328 \mathrm{br}(\mathrm{OH})$, 3076, 2928, 2855, 1640, 1439, 1059, 967 and 910; $\delta_{\mathrm{H}} 5.93-5.78$ $(\mathrm{m},=\mathrm{CH}), 5.51-5.47(\mathrm{~m}, \mathrm{CH}=\mathrm{CH}), 5.09-4.97(2 \times \mathrm{d}, J 17.2$ and $\left.10.0, \mathrm{CH}=\mathrm{CH}_{2}\right), 3.69\left(\mathrm{t}, J 6.5, \mathrm{CH}_{2} \mathrm{O}\right), 2.19-2.02\left(\mathrm{~m}, 3 \times \mathrm{CH}_{2}\right)$, 1.74-1.63 (m, $\left.\mathrm{CH}_{2}\right)$ and 1.55-1.44 (m, $\left.\mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}} 138.8(=\mathrm{CH})$, $130.7(=\mathrm{CH})$, $129.8(=\mathrm{CH}), 114.4\left(=\mathrm{CH}_{2}\right), 62.4\left(\mathrm{CH}_{2} \mathrm{OH}\right), 33.1$ $\left(\mathrm{CH}_{2}\right), 32.4\left(\mathrm{CH}_{2}\right), 31.9\left(\mathrm{CH}_{2}\right), 28.8\left(\mathrm{CH}_{2}\right)$ and $28.7\left(\mathrm{CH}_{2}\right)$. Oxidation of this alcohol 6a using pyridinium chlorochromate (PCC), according to the general procedure then gave the aldehyde 7a $(42 \%) .^{8}$ Alternatively, reduction of 5 a with DIBAL-H in dichloromethane at $<-78{ }^{\circ} \mathrm{C}$ delivered 7 a directly (90%); $\delta_{\mathrm{H}} 9.69(\mathrm{t}, J 1.0, \mathrm{CHO}), 5.80-5.65(\mathrm{~m},=\mathrm{CH})$, 5.40-5.30 (m, CH=CH), 4.95-4.85 $(2 \times \mathrm{d}, J 17.1$ and 9.9, $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 2.45-2.40\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 2.30-2.23\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 2.00-1.89$ $\left(\mathrm{m}, 2 \times \mathrm{CH}_{2}\right)$ and $1.42-1.34\left(\mathrm{~m}, \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}} 202.3(\mathrm{CO}), 138.6$ $(=\mathrm{CH}), 131.5(=\mathrm{CH}), 128.0(=\mathrm{CH}), 114.4\left(=\mathrm{CH}_{2}\right), 43.4\left(\mathrm{CH}_{2}\right)$, $33.1\left(\mathrm{CH}_{2}\right), 31.8\left(\mathrm{CH}_{2}\right), 28.5\left(\mathrm{CH}_{2}\right)$ and $25.1\left(\mathrm{CH}_{2}\right)$.
(5Z,9E)-Pentadeca-5,9,14-trienoic acid 8a. The trienoic acid was prepared by Wittig reaction between the aldehyde 7a and 4carboxybutyl(triphenyl)phosphonium bromide (46%) according to the general procedure, ${ }^{1}$ and gave a ca. 3:1 mixture of the E, Z - and E, E-isomers; $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3500-2500br $\left(\mathrm{CO}_{2} \mathrm{H}\right)$, $1709,1640,1438,1414,1240,968$ and $911 ; \delta_{\mathrm{H}} 9.45\left(\mathrm{br} \mathrm{s}, \mathrm{CO}_{2} \mathrm{H}\right)$, 5.80 (ddt, J 17.0, 10.3 and $6.7, \mathrm{CH}=\mathrm{CH}_{2}$), $5.45-5.30$ (m , $2 \times \mathrm{CH}=\mathrm{CH}), 5.00(\mathrm{dm}, J 17.0, \mathrm{CH}=\mathrm{CHH}), 4.94(\mathrm{dm}, J 10.3$, $\mathrm{CH}=\mathrm{CH} H), 2.36\left(\mathrm{t}, J 7.5, \mathrm{CH}_{2} \mathrm{CO}_{2}\right), 2.12-1.97\left(\mathrm{~m}, 5 \times \mathrm{CH}_{2}\right)$, 1.73-1.66 $\left(\mathrm{m}, \mathrm{CH}_{2}\right)$ and $1.48-1.40\left(\mathrm{~m}, \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}(E, Z$-isomer $)$ 180.3 (CO), $139.0(=\mathrm{CH}), 130.7(=\mathrm{CH}), 130.6(=\mathrm{CH}), 130.0$ $(=\mathrm{CH}), 128.6 \quad(=\mathrm{CH}), \quad 114.4 \quad\left(=\mathrm{CH}_{2}\right), 33.3 \quad\left(\mathrm{CH}_{2}\right), 32.7$ $\left(2 \times \mathrm{CH}_{2}\right), 32.0\left(\mathrm{CH}_{2}\right), 28.9\left(\mathrm{CH}_{2}\right), 27.4\left(\mathrm{CH}_{2}\right), 26.6\left(\mathrm{CH}_{2}\right)$ and $24.6\left(\mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}(E, E$-isomer) $131.3(=\mathrm{CH}), 130.4(=\mathrm{CH})$, $130.1(=\mathrm{CH}), 129.1(=\mathrm{CH}), 33.5\left(\mathrm{CH}_{2}\right), 33.4\left(\mathrm{CH}_{2}\right), 31.9\left(\mathrm{CH}_{2}\right)$ and $24.5\left(\mathrm{CH}_{2}\right)$.

Se-Phenyl pentadeca-5,9,14-trieneselenoate 9a. The ester was prepared (68%) from the acid 8a according to the general procedure. ${ }^{1}$ Purification by chromatography afforded a ca. 9:1 mixture of the Z, E - and E, E-isomers; $\delta_{\mathrm{H}} 7.48-7.44(\mathrm{~m}, 2 \times$ aryl $=\mathrm{CH}), 7.34-7.30(\mathrm{~m}, 3 \times \operatorname{aryl}=\mathrm{CH}), 5.77(\mathrm{ddt}, J 17.1,10.2$ and 6.7, $\mathrm{CH}=\mathrm{CH}_{2}$), $5.42-5.23(\mathrm{~m}, 2 \times \mathrm{CH}=\mathrm{CH}), 4.94(\mathrm{dm}, J 17.1$, $\mathrm{CH}=\mathrm{CHH}), 4.90(\mathrm{dm}, J 10.2, \mathrm{CH}=\mathrm{CH} H), 2.66$ (t, J 7.4, $\left.\mathrm{CH}_{2} \mathrm{CO}\right), 2.07-1.97\left(\mathrm{~m}, 5 \times \mathrm{CH}_{2}\right), 1.76-1.65\left(\mathrm{~m}, \mathrm{CH}_{2}\right)$ and $1.46-1.35\left(\mathrm{~m}, \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}(Z, E$-isomer) $200.1(\mathrm{CO}), 138.8(=\mathrm{CH})$, $135.7(2 \times \operatorname{aryl}=\mathrm{CH}), 130.7(=\mathrm{CH}), 130.5(=\mathrm{CH}), 129.8(=\mathrm{CH})$, $129.3(2 \times$ aryl $=\mathrm{CH}), 128.8(\operatorname{aryl}=\mathrm{CH}), 128.3(=\mathrm{CH}), 126.4$ (quat. C), $114.4\left(=\mathrm{CH}_{2}\right), 46.8\left(\mathrm{CH}_{2}\right), 33.2\left(\mathrm{CH}_{2}\right), 32.6\left(\mathrm{CH}_{2}\right)$, $31.9\left(\mathrm{CH}_{2}\right), 28.7\left(\mathrm{CH}_{2}\right), 27.3\left(\mathrm{CH}_{2}\right), 26.2\left(\mathrm{CH}_{2}\right)$ and $25.1\left(\mathrm{CH}_{2}\right)$; $\delta_{\mathrm{C}}(E, E$-isomer) $130.3(=\mathrm{CH}), 129.9(=\mathrm{CH}), 129.1(=\mathrm{CH}), 46.7$ $\left(\mathrm{CH}_{2}\right), 31.5\left(\mathrm{CH}_{2}\right), 28.5\left(\mathrm{CH}_{2}\right)$ and $25.0\left(\mathrm{CH}_{2}\right)$.

Reductive cyclisation of the $S e$-phenyl selenoate 9a. Cyclisation of the ester according to the general procedure afforded a complex mixture of products. After removal of the tin residues, separation of the mixture (56%) by flash chromatography (light petroleum \rightarrow light petroleum-ether, 50:1) gave three fractions: (i) 2-deca-4,9-dienylcyclopentanone $(\sim 10 \%) ; \delta_{\mathrm{C}} 221.6(\mathrm{CO}), 139.0(=\mathrm{CH}), 130.3(=\mathrm{CH}), 130.1$ $(=\mathrm{CH}), 114.4\left(=\mathrm{CH}_{2}\right), 49.1(\mathrm{CH}), 38.2\left(\mathrm{CH}_{2}\right), 33.2\left(\mathrm{CH}_{2}\right), 32.5$
$\left(\mathrm{CH}_{2}\right), 32.0\left(\mathrm{CH}_{2}\right), 29.6\left(\mathrm{CH}_{2}\right), 29.2\left(\mathrm{CH}_{2}\right), 28.8\left(\mathrm{CH}_{2}\right), 27.6$ $\left(\mathrm{CH}_{2}\right)$ and $20.8\left(\mathrm{CH}_{2}\right)$; (ii) a 5:4 mixture of diastereoisomers of the indanone $16(24 \%) ; \delta_{\mathrm{H}} 2.60-1.10$ (complex series of m$), 0.92$ (d, $J 6.6, \mathrm{CH}_{3}$) and $0.69\left(\mathrm{~d}, J 7.3, \mathrm{CH}_{3}\right)$; δ_{C} (major) $215.5(\mathrm{CO})$, $54.7(\mathrm{CH}), 46.7(\mathrm{CH}), 46.2(\mathrm{CH}), 45.3(\mathrm{CH}), 38.0\left(\mathrm{CH}_{2}\right), 35.3$ $(\mathrm{CH}), 34.0\left(\mathrm{CH}_{2}\right), 28.8\left(\mathrm{CH}_{2}\right), 28.5\left(\mathrm{CH}_{2}\right), 27.4\left(\mathrm{CH}_{2}\right), 25.6$ $\left(\mathrm{CH}_{2}\right), 22.2\left(\mathrm{CH}_{2}\right), 22.0\left(\mathrm{CH}_{2}\right)$ and $15.6\left(\mathrm{CH}_{3}\right)$; (minor) 215.4 (CO), $54.1(\mathrm{CH}), 52.5(\mathrm{CH}), 48.7(\mathrm{CH}), 47.1(\mathrm{CH}), 40.5(\mathrm{CH})$, $38.0\left(\mathrm{CH}_{2}\right), 35.7\left(\mathrm{CH}_{2}\right), 33.2\left(\mathrm{CH}_{2}\right), 28.0\left(\mathrm{CH}_{2}\right), 27.2\left(\mathrm{CH}_{2}\right)$, $24.4\left(\mathrm{CH}_{2}\right), 22.0\left(\mathrm{CH}_{2}\right), 21.6\left(\mathrm{CH}_{2}\right)$ and $15.6\left(\mathrm{CH}_{3}\right)$; (iii) a mixture of another isomer of the indanone $16(\sim 35 \%)$ and some unidentified compounds ($\sim 10 \%$). The latter isomer of 16 showed: $\delta_{\mathrm{H}} 2.58-1.02$ (complex series of m), 0.68 (d, $J 7.2, \mathrm{CH}_{3}$); $\delta_{\mathrm{C}} 216.0(\mathrm{CO}), 54.5(\mathrm{CH}), 46.9(\mathrm{CH}), 45.4(\mathrm{CH}), 45.3(\mathrm{CH}), 38.0$ $\left(\mathrm{CH}_{2}\right), 35.9(\mathrm{CH}), 33.8\left(\mathrm{CH}_{2}\right), 27.9\left(\mathrm{CH}_{2}\right), 27.8\left(\mathrm{CH}_{2}\right), 27.5$ $\left(\mathrm{CH}_{2}\right), 25.6\left(\mathrm{CH}_{2}\right), 22.1\left(\mathrm{CH}_{2}\right), 21.6\left(\mathrm{CH}_{2}\right)$ and $14.7\left(\mathrm{CH}_{3}\right)$.

Se-Phenyl nondeca-5,9,13,18-tetraeneselenoate 13. The title ester was prepared starting from ($4 E$)-deca-4,9-dienal 7 a , using the general procedures described earlier. Thus, reaction between vinylmagnesium bromide and (4 E)-deca-4,9-dienal 7a first gave ($6 E$)-dodeca-1,6,11-trien-3-ol (48%) as an oil; $\delta_{\mathrm{H}} 6.12-$ $5.91\left(\mathrm{~m}, 2 \times \mathrm{CH}=\mathrm{CH}_{2}\right), 5.63-5.59(\mathrm{~m}, \mathrm{CH}=\mathrm{CH}), 5.44-5.09(\mathrm{~m}$, $\left.2 \times \mathrm{CH}=\mathrm{CH}_{2}\right), 4.34-4.26(\mathrm{~m}, \mathrm{CHO}), 2.31-2.14\left(\mathrm{~m}, 3 \times \mathrm{CH}_{2}\right)$, $1.83-1.70\left(\mathrm{~m}, \mathrm{CH}_{2}\right)$ and $1.69-1.56\left(\mathrm{~m}, \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}} 141.0(=\mathrm{CH})$, $138.8(=\mathrm{CH}), 130.8(=\mathrm{CH}), 129.8(=\mathrm{CH}), 114.6\left(=\mathrm{CH}_{2}\right), 114.4$ $\left(=\mathrm{CH}_{2}\right), 72.7(\mathrm{CHOH}), 36.7\left(\mathrm{CH}_{2}\right), 33.2\left(\mathrm{CH}_{2}\right), 31.9\left(\mathrm{CH}_{2}\right)$, $28.7\left(\mathrm{CH}_{2}\right)$ and $28.5\left(\mathrm{CH}_{2}\right)$. This compound was converted into ethyl ($4 E, 8 E$)-tetradeca-4,8,13-trienoate 10 (89%), uncontaminated with stereoisomers using the Claisen-Ireland rearrangement; $\delta_{\mathrm{H}} 5.95-5.82\left(\mathrm{~m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.53-5.47(\mathrm{~m}, 2 \times \mathrm{CH}=\mathrm{CH})$, $5.08(\mathrm{dm}, J 17.1, \mathrm{CHH}), 5.03(\mathrm{dm}, J 10.9, \mathrm{CH} H), 4.21(\mathrm{q}, J 7.2$, $\left.\mathrm{OCH}_{2}\right), 2.46-2.38\left(\mathrm{~m}, 2 \times \mathrm{CH}_{2}\right), 2.17-2.09\left(\mathrm{~m}, 4 \times \mathrm{CH}_{2}\right)$, $1.58-1.47\left(\mathrm{~m}, \mathrm{CH}_{2}\right)$ and $1.34\left(\mathrm{t}, J 7.2, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}} 173.2(\mathrm{CO})$, $138.8(=\mathrm{CH}), 131.1(=\mathrm{CH})$, $130.3(=\mathrm{CH}), 129.9(=\mathrm{CH}), 128.3$ $(=\mathrm{CH}), 114.3\left(=\mathrm{CH}_{2}\right), 60.2\left(\mathrm{OCH}_{2}\right), 34.3\left(\mathrm{CH}_{2}\right)$, $33.1\left(\mathrm{CH}_{2}\right)$, $32.6\left(\mathrm{CH}_{2}\right), 32.5\left(\mathrm{CH}_{2}\right), 31.9\left(\mathrm{CH}_{2}\right), 28.7\left(\mathrm{CH}_{2}\right), 27.9\left(\mathrm{CH}_{2}\right)$ and $14.2\left(\mathrm{CH}_{3}\right)$. Reduction of $\mathbf{1 0}$ with lithium aluminium hydride next gave ($4 E, 8 E$)-tetradeca-4,8,13-trien-1-ol (95%); $\delta_{\mathrm{H}} 5.97-$ $5.82\left(\mathrm{~m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.58-5.45(\mathrm{~m}, 2 \times \mathrm{CH}=\mathrm{CH}), 5.09(\mathrm{~d}, J 18.1$, $=\mathrm{CHH}), 5.03(\mathrm{~d}, J 10.2,=\mathrm{CH} H), 3.73\left(\mathrm{t}, J 6.6, \mathrm{CH}_{2} \mathrm{O}\right), 2.18-1.99$ $\left(\mathrm{m}, 5 \times \mathrm{CH}_{2}\right), 1.77-1.64\left(\mathrm{~m}, \mathrm{CH}_{2}\right)$ and $1.58-1.47\left(\mathrm{~m}, \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}$ $138.9(=\mathrm{CH})$, $130.5(=\mathrm{CH}), 130.3(=\mathrm{CH}), 130.0(=\mathrm{CH}), 129.7$ $(=\mathrm{CH}), 114.3\left(=\mathrm{CH}_{2}\right), 62.5\left(\mathrm{CH}_{2} \mathrm{OH}\right), 33.2\left(\mathrm{CH}_{2}\right), 32.6$ $\left(2 \times \mathrm{CH}_{2}\right), 32.3\left(\mathrm{CH}_{2}\right), 31.9\left(\mathrm{CH}_{2}\right), 28.9\left(\mathrm{CH}_{2}\right)$ and $28.7\left(\mathrm{CH}_{2}\right)$ which was oxidised using PCC to the corresponding aldehyde 11 (71%); $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) $3075,2925,2854,1726,1640,1440$ 968 and $910 ; \delta_{\mathrm{H}} 9.69(\mathrm{t}, J 1.7, \mathrm{CHO}), 5.81-5.66\left(\mathrm{~m}, \mathrm{CH}=\mathrm{CH}_{2}\right)$, 5.44-5.28 (m, $2 \times \mathrm{CH}=\mathrm{CH}$), $4.91(\mathrm{dm}, J 17.1,=\mathrm{CHH}), 4.87$ (dm, J $10.2,=\mathrm{CH} H), 2.45-2.39\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 2.29-2.23\left(\mathrm{~m}, \mathrm{CH}_{2}\right)$, 2.01-1.88 (m, $\left.4 \times \mathrm{CH}_{2}\right)$ and $1.42-1.31\left(\mathrm{~m}, \mathrm{CH}_{2}\right) ; \delta_{\mathrm{c}} 202.4$ $(\mathrm{CO}), 138.8(=\mathrm{CH}), 131.3(=\mathrm{CH}), 130.4(=\mathrm{CH}), 129.8(=\mathrm{CH})$, $128.0(=\mathrm{CH}), 114.3\left(=\mathrm{CH}_{2}\right), 43.4\left(\mathrm{CH}_{2}\right)$, $33.1\left(\mathrm{CH}_{2}\right), 32.5$ $\left(\mathrm{CH}_{2}\right), 32.4\left(\mathrm{CH}_{2}\right), 31.9\left(\mathrm{CH}_{2}\right), 28.7\left(\mathrm{CH}_{2}\right)$ and $25.1\left(\mathrm{CH}_{2}\right)$. A Wittig reaction between the aldehyde 11 and 4-carboxybutyl(triphenyl)phosphonium bromide ${ }^{1}$ next led to ($5 Z, 9 E, 13 E$)-nonadeca-5,9,13,18-tetraenoic acid 12 (28%); $\delta_{\mathrm{H}} 10.50(\mathrm{br} \mathrm{s}$, $\left.\mathrm{CO}_{2} \mathrm{H}\right), 5.98-5.83\left(\mathrm{~m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.56-5.41(\mathrm{~m}, 3 \times \mathrm{CH}=\mathrm{CH})$, $5.09(\mathrm{dm}, J 17.1,=\mathrm{CHH}), 5.04(\mathrm{dm}, J 10.9,=\mathrm{CHH}), 2.45(\mathrm{t}$, $J 7.3, \mathrm{CH}_{2} \mathrm{CO}$), 2.29-2.10 (m, $7 \times \mathrm{CH}_{2}$), 1.79 (pentet, $J 7.3$, CH_{2}) and 1.59-1.48 ($\mathrm{m}, \mathrm{CH}_{2}$), which was then phenylselenylated to produce the $S e$-phenyl selenoate $13(68 \%)$ as a pale yellow oil; $\delta_{\mathrm{H}} 7.44-7.38(\mathrm{~m}, 2 \times$ aryl $=\mathrm{CH}), 7.31-7.26(\mathrm{~m}$, $3 \times$ aryl $=\mathrm{CH}), \quad 5.80-5.65\left(\mathrm{~m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.33-5.18(\mathrm{~m}$, $3 \times \mathrm{CH}=\mathrm{CH})$, $4.91(\mathrm{dm}, J 18.0,=\mathrm{CHH})$, $4.86(\mathrm{dm}, J 9.9$, $=\mathrm{CH} H), 2.61\left(\mathrm{t}, J 7.4, \mathrm{CH}_{2}\right), 2.10-1.92\left(\mathrm{~m}, 7 \times \mathrm{CH}_{2}\right), 1.72-1.60$ $\left(\mathrm{m}, \mathrm{CH}_{2}\right)$ and 1.41-1.30 $\left(\mathrm{m}, \mathrm{CH}_{2}\right) ; \delta_{\mathrm{c}} 200.0(\mathrm{CO}), 138.8(=\mathrm{CH})$, $135.7(2 \times$ aryl $=\mathrm{CH}), 130.7(=\mathrm{CH}), 130.24(=\mathrm{CH}), 130.17$ $(=\mathrm{CH}), 130.0(=\mathrm{CH}), 129.7(=\mathrm{CH}), 129.2(2 \times$ aryl $=\mathrm{CH}), 128.7$ (aryl $=\mathrm{CH}$), $128.2\left(=\mathrm{CH}\right.$), 126.4 (quat. C), $114.3\left(=\mathrm{CH}_{2}\right), 46.8$
$\left(\mathrm{CH}_{2}\right), 33.1\left(\mathrm{CH}_{2}\right), 32.6\left(2 \times \mathrm{CH}_{2}\right), 32.5\left(\mathrm{CH}_{2}\right), 31.9\left(\mathrm{CH}_{2}\right)$, $28.7\left(\mathrm{CH}_{2}\right), 27.3\left(\mathrm{CH}_{2}\right), 26.2\left(\mathrm{CH}_{2}\right)$ and $25.1\left(\mathrm{CH}_{2}\right)$.

Reductive cyclisation of the $S e$-phenyl selenoate 13. Cyclisation of the title ester, according to the general procedure, led to a $1: 1$ mixture of diastereoisomers of the indanone 17 (75%) which was separated by further chromatography over flash silica gel (light petroleum-ether, $50: 1$). The first diastereoisomer showed: $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) $3075,2924,2855$, 1707, 1640, 1457, 1237, 967 and 909 ; $\delta_{\mathrm{H}} 5.81-5.66(\mathrm{~m}$, $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 5.37-5.27(\mathrm{~m}, \mathrm{CH}=\mathrm{CH}), 4.96(\mathrm{dm}, J 17.0,=\mathrm{CHH})$, $4.89(\mathrm{dm}, J 10.2,=\mathrm{CH} H)$ and 2.59-1.12 (very complex series of $\mathrm{m}) ; \delta_{\mathrm{C}} 215.5(\mathrm{CO}), 138.8(=\mathrm{CH}), 130.4(=\mathrm{CH})$, $130.1(=\mathrm{CH})$, $114.3\left(=\mathrm{CH}_{2}\right), 54.2(\mathrm{CH}), 46.3(\mathrm{CH}), 44.6(\mathrm{CH}), 37.7\left(\mathrm{CH}_{2}\right)$, $33.2\left(\mathrm{CH}_{2}\right), 32.8\left(\mathrm{CH}_{2}\right), 31.9\left(\mathrm{CH}_{2}\right), 30.1\left(\mathrm{CH}_{2}\right), 28.7{ }_{4}\left(\mathrm{CH}_{2}\right)$, $28.6_{6}\left(\mathrm{CH}_{2}\right), 28.5\left(\mathrm{CH}_{2}\right), 27.2\left(\mathrm{CH}_{2}\right), 25.1\left(\mathrm{CH}_{2}\right)$ and 21.2 $\left(\mathrm{CH}_{2}\right) ; m / z 274.2261\left(\mathrm{M}^{+} . \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}\right.$ requires $\mathrm{M}^{+}, 274.2297$). The second diastereoisomer showed: $v_{\max } / \mathrm{cm}^{-1}$ (film) 3075, 2926, 2855, 1738sh, 1710, 1640, 1456, 1153, 967 and $909 ; \delta_{\mathrm{H}}$ 5.81-5.66 (m, CH=CH2), 5.34-5.26 (m, CH=CH), $4.92(\mathrm{dm}, J$ $17.0,=\mathrm{CHH}), 4.87(\mathrm{dm}, J 11.5,=\mathrm{CH} H)$ and $2.65-0.80($ complex series of m); $\delta_{\mathrm{C}} 214.1(\mathrm{CO}), 138.8(=\mathrm{CH}), 130.4(=\mathrm{CH}), 130.1$ $(=\mathrm{CH}), 114.3\left(=\mathrm{CH}_{2}\right), 52.5(\mathrm{CH}), 48.3(\mathrm{CH}), 43.0(\mathrm{CH}), 40.3$ $\left(\mathrm{CH}_{2}\right), 34.1\left(\mathrm{CH}_{2}\right), 33.2\left(\mathrm{CH}_{2}\right), 32.7\left(\mathrm{CH}_{2}\right), 31.9\left(\mathrm{CH}_{2}\right), 30.5$ $\left(\mathrm{CH}_{2}\right), 28.7\left(\mathrm{CH}_{2}\right), 28.0\left(\mathrm{CH}_{2}\right), 26.5\left(\mathrm{CH}_{2}\right), 24.7\left(\mathrm{CH}_{2}\right)$ and 23.2 $\left(\mathrm{CH}_{2}\right) ; m / z 274.2333\left(\mathrm{M}^{+} . \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}\right.$ requires $\mathrm{M}^{+}, 274.2297$).

Se-Phenyl (5Z,9E)-9-methylpentadeca-5,9,14-trieneselenoate 9 b . The title ester was prepared from ethyl 4-methyldeca-4,9dienoate $\mathbf{5 b}{ }^{1}$ following the general procedures, and via (i) ($4 E$)-4-methyldeca-4,9-dien-1-ol $6 \mathbf{b} ;{ }^{9} v_{\text {max }} / \mathrm{cm}^{-1}$ (film) $3363 \mathrm{br}(\mathrm{OH})$, 3076, 2929, 1640, 1454, 1378, 1052, 909 and 734; $\delta_{\mathrm{H}} 5.82-5.67$ $(\mathrm{m},=\mathrm{CH}), 5.13-5.10(\mathrm{~m},=\mathrm{CH}), 4.97-4.85(\mathrm{ca} 2 \times \mathrm{d},. J 17.6$ and 9.6, $=\mathrm{CH}_{2}$), $3.55\left(\mathrm{t}, J 6.5, \mathrm{CH}_{2} \mathrm{OH}\right), 2.10-1.89(\mathrm{~m}, 4 \times$ $\left.\mathrm{CH}_{2}\right), 1.65-1.57\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 1.54\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$ and $1.41-1.30(\mathrm{~m}$, CH_{2}); $\delta_{\mathrm{C}} 138.9(=\mathrm{CH}$), 134.8 (quat. C), $124.8(=\mathrm{CH})$, 114.3 $\left(=\mathrm{CH}_{2}\right), 62.7\left(\mathrm{CH}_{2} \mathrm{OH}\right), 35.9\left(\mathrm{CH}_{2}\right), 33.3\left(\mathrm{CH}_{2}\right), 30.7\left(\mathrm{CH}_{2}\right)$, $29.0\left(\mathrm{CH}_{2}\right), 27.3\left(\mathrm{CH}_{2}\right)$ and $15.8\left(\mathrm{CH}_{3}\right)$; (ii) $(4 E)$-4-methyldeca-4,9-dienal 7b; ${ }^{9} \delta_{\mathrm{H}} 9.68(\mathrm{br} \mathrm{s}, \mathrm{CHO}), 5.81-5.66\left(\mathrm{~m}, \mathrm{CH}=\mathrm{CH}_{2}\right)$, $5.09(\mathrm{t}, J 6.6,=\mathrm{CH}), 4.92$ and $4.87(2 \times \mathrm{d}, J 16.8$ and 10.2 , $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 2.45\left(\mathrm{t}, J 7.1, \mathrm{CH}_{2} \mathrm{CO}\right), 2.25\left(\mathrm{t}, J 7.1, \mathrm{CH}_{2}\right), 2.00-$ $1.89\left(\mathrm{~m}, 2 \times \mathrm{CH}_{2}\right), 1.54\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$ and $1.40-1.30\left(\mathrm{~m}, \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}$ 202.6 (CO), $138.8(=\mathrm{CH})$, 133.1 (quat. C), $125.4(=\mathrm{CH})$, 114.4 $\left(=\mathrm{CH}_{2}\right), 42.1\left(\mathrm{CH}_{2}\right), 33.2\left(\mathrm{CH}_{2}\right), 31.8\left(\mathrm{CH}_{2}\right), 28.8\left(\mathrm{CH}_{2}\right), 27.2$ $\left(\mathrm{CH}_{2}\right)$ and $16.0\left(\mathrm{CH}_{3}\right)$; (iii) $(5 \mathrm{Z}, 9 \mathrm{E})$-9-methylpentadeca-5,9,14trienoic acid 8 b contaminated with $c a .10 \%$ of the E, E-isomer; $v_{\max } / \mathrm{cm}^{-1}$ (film) $3500-2500 \mathrm{br}\left(\mathrm{CO}_{2} \mathrm{H}\right), 1709,1640,1439,1414$, 1381, 1241, 993 and $911 ; \delta_{\mathrm{H}} 5.82-5.67\left(\mathrm{~m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.35-5.22$ $(\mathrm{m}, \mathrm{CH}=\mathrm{CH}), 5.08-5.03(\mathrm{~m},=\mathrm{CH}), 4.92$ and $4.87(2 \times \mathrm{d}, J 18.3$ and $\left.11.2, \mathrm{CH}=\mathrm{CH}_{2}\right), 2.29\left(\mathrm{t}, J 7.4, \mathrm{CH}_{2}\right), 2.07-1.88(\mathrm{~m}$, $\left.5 \times \mathrm{CH}_{2}\right), 1.68-1.59\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 1.52\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$ and $1.41-1.30(\mathrm{~m}$, CH_{2}); $\delta_{\mathrm{C}} 180.5(\mathrm{CO}), 139.1(=\mathrm{CH}), 134.8$ (quat. C), $130.9(=\mathrm{CH})$, $128.3(=\mathrm{CH}), 124.7(=\mathrm{CH}), 114.4\left(=\mathrm{CH}_{2}\right), 39.6\left(\mathrm{CH}_{2}\right), 33.5$ $\left(\mathrm{CH}_{2}\right), 33.4\left(\mathrm{CH}_{2}\right), 29.1\left(\mathrm{CH}_{2}\right), 27.4\left(\mathrm{CH}_{2}\right), 26.5\left(\mathrm{CH}_{2}\right), 25.9$ $\left(\mathrm{CH}_{2}\right), 24.6\left(\mathrm{CH}_{2}\right)$ and $16.0\left(\mathrm{CH}_{3}\right)$.
The $S e$-phenyl selenoate $9 \mathbf{9 b}$, essentially a single stereoisomer after chromatographic purification, showed: $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) $3074,3002,2925,2854,1725,1640,1580,1477,1438,990,910$, 738 and $689 ; \delta_{\mathrm{H}} 7.58-7.47(\mathrm{~m}, 2 \times$ aryl $=\mathrm{CH}), 7.45-7.33(\mathrm{~m}$, $3 \times$ aryl $=\mathrm{CH}), \quad 5.94-5.79\left(\mathrm{~m}, \quad \mathrm{CH}=\mathrm{CH}_{2}\right), \quad 5.46-5.32(\mathrm{~m}$, $2 \times \mathrm{dt}, J 10.5,6.9$ and $6.6, Z-\mathrm{CH}=\mathrm{CH}), 5.21-5.18(\mathrm{~m},=\mathrm{CH})$, $5.08-4.96$ (ca. $2 \times \mathrm{d}, J 17$ and $10,=\mathrm{CH}_{2}$), $2.75(\mathrm{t}, J 7.4$, $\mathrm{CH}_{2} \mathrm{CO}$), 2.19-2.01 ($\mathrm{m}, 5 \times \mathrm{CH}_{2}$), 1.85-1.74 ($\mathrm{m}, \mathrm{CH}_{2}$), $1.64(\mathrm{~s}$, $\left.\mathrm{CH}_{3}\right), 1.53-1.42\left(\mathrm{~m}, \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}} 200.2(\mathrm{CO}), 139.0(=\mathrm{CH}), 135.7$ $(2 \times$ aryl $=\mathrm{CH}), 134.6$ (quat. C), $130.9(=\mathrm{CH}), 129.3(2 \times$ aryl $=\mathrm{CH}), 128.8(\operatorname{aryl}=\mathrm{CH}), 128.0(=\mathrm{CH}), 126.4$ (quat. C), 124.7 $(=\mathrm{CH}), 114.3\left(=\mathrm{CH}_{2}\right), 46.8\left(\mathrm{CH}_{2}\right), 39.5\left(\mathrm{CH}_{2}\right), 33.3\left(\mathrm{CH}_{2}\right), 29.0$ $\left(\mathrm{CH}_{2}\right), 27.3\left(\mathrm{CH}_{2}\right), 26.2\left(\mathrm{CH}_{2}\right), 25.8\left(\mathrm{CH}_{2}\right), 25.2\left(\mathrm{CH}_{2}\right)$ and $16.0\left(\mathrm{CH}_{3}\right) ; m / z(\%) 233(12), 215(16)$ and 149 (100) (Found: C, $67.8 ; \mathrm{H}, 7.9 . \mathrm{C}_{22} \mathrm{H}_{30}$ OSe requires $\mathrm{C}, 67.9 ; \mathrm{H}, 7.8 \%$).

Reductive cyclisation of $\mathbf{S e}$-phenyl selenoate 9b. Cyclisation of the title ester according to the general procedure led to a complicated mixture of products (76%). Separation by flash chromatography over silica gel (light petroleum \rightarrow light petroleum-ether, $50: 1$) gave: (i) the cyclopentanone 22 admixed with the isomers of 20 and some unidentified compounds; (ii) a mixture of compounds 21 and $20(\sim 25 \%)$; (iii) a 5:2 mixture of the diastereoisomers of compound 20 ($\sim 45 \%$); δ_{C} (major) $213.3(\mathrm{CO}$), $55.5(\mathrm{CH}), 52.2(\mathrm{CH}), 43.6$ $(\mathrm{CH}), 43.4(\mathrm{CH}), 41.4\left(\mathrm{CH}_{2}\right), 37.2\left(\mathrm{CH}_{2}\right), 36.4$ (quat. C), 30.3 $\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{2}\right), 26.6\left(\mathrm{CH}_{2}\right), 26.5\left(\mathrm{CH}_{2}\right), 24.4\left(\mathrm{CH}_{2}\right), 20.5$ $\left(\mathrm{CH}_{2}\right), 15.4\left(\mathrm{CH}_{3}\right)$ and $11.4\left(\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}$ (minor) $213.6(\mathrm{CO}), 55.7$ $(\mathrm{CH}), 44.1(\mathrm{CH}), 43.4(\mathrm{CH}), 41.5\left(\mathrm{CH}_{2}\right), 40.8(\mathrm{CH}), 37.2\left(\mathrm{CH}_{2}\right)$, 35.0 (quat. C), $29.4\left(\mathrm{CH}_{2}\right), 28.6\left(\mathrm{CH}_{2}\right), 26.5\left(2 \times \mathrm{CH}_{2}\right), 21.0$ $\left(\mathrm{CH}_{2}\right), 20.7\left(\mathrm{CH}_{2}\right), 19.3\left(\mathrm{CH}_{3}\right)$ and $14.1\left(\mathrm{CH}_{3}\right) ; m / z 234.1976$. (M^{+}. CHO requires $M^{+}, 234.1984$); $m / z 234$ (100%), 219 (30), 216 (8), 201 (28), 191 (31), 177 (10), 165 (10), 164 (14) and 163 (28).

Se-Phenyl (5Z,9E)-9-methyltetradeca-5,9,13-trieneselenoate 26. The title ester was prepared starting from 3-hydroxy-2-methylhepta-1,6-diene 23; ${ }^{10} \delta_{\mathrm{H}} 5.86$ (ddt, J 16.8, 10.2 and 6.7, $\mathrm{CH}=\mathrm{CH}_{2}$), $5.10-4.86\left(\mathrm{~m}, 2 \times=\mathrm{CH}_{2}\right), 4.09(\mathrm{t}, J 6.4, \mathrm{CHO})$, 2.21-2.05 ($\mathrm{m}, \mathrm{CH}_{2}$), $1.75\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$ and $1.80-1.59\left(\mathrm{~m}, \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}$ 147.2 (quat. C), $138.2(=\mathrm{CH}), 114.5\left(=\mathrm{CH}_{2}\right), 110.9\left(=\mathrm{CH}_{2}\right), 75.0$ $(\mathrm{CHOH}), 33.7\left(\mathrm{CH}_{2}\right), 29.7\left(\mathrm{CH}_{2}\right)$ and $17.2\left(\mathrm{CH}_{3}\right)$ produced from the addition of but-3-enylmagnesium bromide to methacrolein. According to the general procedures, ${ }^{1}$ the alcohol 23 was next converted sequentially into: (i) ethyl($4 E$)-4-methyl-4,8-nonadienoate 24a; ${ }^{10} \quad v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3076, 2978, 2928, 1736, 1640, 1446, 1371, 1296, 1252, 1157, 1035 and 912; $\delta_{\mathrm{H}} 5.81-5.70\left(\mathrm{~m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.20-5.10(\mathrm{~m},=\mathrm{CH}), 5.05-4.95$ $\left(2 \times \mathrm{dm}, J 17.4\right.$ and $\left.10.5, \mathrm{CH}=\mathrm{CH}_{2}\right), 4.10(\mathrm{q}, J 7.4$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.42-2.22\left(\mathrm{~m}, 2 \times \mathrm{CH}_{2}\right), 2.07-2.03\left(\mathrm{~m}, 2 \times \mathrm{CH}_{2}\right)$, $1.58\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$ and $1.24\left(\mathrm{t}, J 7.4, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}} 173.4(\mathrm{CO})$, $138.4(=\mathrm{CH}), 133.7$ (quat. C), $124.5(=\mathrm{CH}), 114.4\left(=\mathrm{CH}_{2}\right), 60.1$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 34.6\left(\mathrm{CH}_{2}\right), 33.7\left(\mathrm{CH}_{2}\right), 33.2\left(\mathrm{CH}_{2}\right), 27.2\left(\mathrm{CH}_{2}\right)$, $15.9\left(\mathrm{CH}_{3}\right)$ and $14.2\left(\mathrm{CH}_{3}\right)$; (ii) $(4 E)$-4-methylnona-4,8-dien-1ol 24b; ${ }^{11} v_{\text {max }} / \mathrm{cm}^{-1}$ (film) $3346 \mathrm{br}(\mathrm{OH}), 3076,2935,1640,1446$, 1381, 1059 and $910 ; \delta_{\mathrm{H}} 5.80-5.72\left(\mathrm{~m}, \mathrm{C} H=\mathrm{CH}_{2}\right), 5.20-5.12(\mathrm{~m}$, $=\mathrm{CH}), 5.04-4.95\left(2 \times \mathrm{dm}, J 17.5\right.$ and $\left.10.1, \mathrm{CH}=\mathrm{CH}_{2}\right), 3.65(\mathrm{t}, J$ 7.3, $\mathrm{CH}_{2} \mathrm{OH}$), $2.10-1.98\left(\mathrm{~m}, 3 \times \mathrm{CH}_{2}\right), 1.70-1.62\left(\mathrm{~m}, \mathrm{CH}_{2}\right)$ and $1.59\left(\mathrm{~s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}} 138.6(=\mathrm{CH}), 135.0($ quat. C), $124.2(=\mathrm{CH})$, $114.4\left(=\mathrm{CH}_{2}\right), 62.6\left(\mathrm{CH}_{2} \mathrm{OH}\right), 35.9\left(\mathrm{CH}_{2}\right), 33.9\left(\mathrm{CH}_{2}\right), 30.7$ $\left(\mathrm{CH}_{2}\right), 27.3\left(\mathrm{CH}_{2}\right)$ and $15.9\left(\mathrm{CH}_{3}\right)$; (iii) $(4 E)$-4-methylnona-4, 8dienal $24 \mathrm{c} v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3076, 2920, 2718, 1725, 1669, 1640 , 1444, 1414, 1384, 1247 and $912 ; \delta_{\mathrm{H}} 9.75$ (t, J 1.9, CHO), 5.86$5.75\left(\mathrm{~m}, \mathrm{CH}=\mathrm{CH}_{2}\right)$, $5.19-5.15(\mathrm{~m},=\mathrm{CH}), 5.03-4.93(2 \times \mathrm{dm}, J$ 16.8 and $10.2, \mathrm{CH}=\mathrm{CH}_{2}$), 2.55-2.45 ($\mathrm{m}, \mathrm{CH}_{2}$), 2.37-2.20 (m, $\left.\mathrm{CH}_{2}\right), 2.10-2.04\left(\mathrm{~m}, 2 \times \mathrm{CH}_{2}\right)$ and $1.62\left(\mathrm{~s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{c}} 202.4$ $(\mathrm{CO}), 138.1(=\mathrm{CH}), 133.1$ (quat. C), $124.6(=\mathrm{CH}), 114.3\left(=\mathrm{CH}_{2}\right)$, $41.9\left(\mathrm{CH}_{2}\right), 33.5\left(\mathrm{CH}_{2}\right), 31.6\left(\mathrm{CH}_{2}\right), 27.0\left(\mathrm{CH}_{2}\right)$ and $15.9\left(\mathrm{CH}_{3}\right)$ (the aldehyde 24 c was also prepared by Claisen rearrangement of the vinyl ether derived from 23) and: (iv) ($5 Z, 9 E$) -9 -methyltetradeca-5,9,13-trienoic acid 25, containing ca. 12.5% of the E, E-acid; $v_{\text {max }} / \mathrm{cm}^{-1}(\mathrm{film}) 3500-2500 \mathrm{br}\left(\mathrm{CO}_{2} \mathrm{H}\right), 1709$, $1640,1438,1241$ and $911 ; \delta_{\mathrm{H}} 5.91-5.78\left(\mathrm{~m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.45-$ $5.34(2 \times \mathrm{dt}, J 10.9,6.9$ and $6.7, Z-\mathrm{CH}=\mathrm{CH}$), $5.22-5.11$ (m, $=\mathrm{CH}), 5.08-4.98\left(2 \times \mathrm{d}, J 18.5\right.$ and $\left.11.2, \mathrm{CH}=\mathrm{CH}_{2}\right), 2.38(\mathrm{t}, J$ 7.4, CH_{2}), 2.19-1.96 (m, $\left.5 \times \mathrm{CH}_{2}\right), 1.75-1.65\left(\mathrm{~m}, \mathrm{CH}_{2}\right)$ and $1.61\left(\mathrm{~s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}(Z, E$-isomer) $180.3(\mathrm{CO}), 138.7(=\mathrm{CH}), 134.9$ (quat. C), $130.7(=\mathrm{CH}), 128.2(=\mathrm{CH}), 124.1(=\mathrm{CH}), 114.4$ $\left(=\mathrm{CH}_{2}\right), 39.5\left(\mathrm{CH}_{2}\right), 33.9\left(\mathrm{CH}_{2}\right), 33.4\left(\mathrm{CH}_{2}\right), 27.4\left(\mathrm{CH}_{2}\right), 26.4$ $\left(\mathrm{CH}_{2}\right), 25.8\left(\mathrm{CH}_{2}\right), 24.5\left(\mathrm{CH}_{2}\right)$ and $15.9\left(\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}(E, E$-isomer $)$ $138.5(=\mathrm{CH}), 128.7(=\mathrm{CH}), 124.8(=\mathrm{CH})$, $114.5\left(=\mathrm{CH}_{2}\right)$, 39.6 $\left(\mathrm{CH}_{2}\right), 33.3\left(\mathrm{CH}_{2}\right), 33.0\left(\mathrm{CH}_{2}\right), 31.7\left(\mathrm{CH}_{2}\right)$ and $24.3\left(\mathrm{CH}_{2}\right)$.
Phenylselenylation of the acid 25, according to the general procedure, ${ }^{1}$ then gave the Z, E-ester 26 (72%), containing $c a$. 5% of the corresponding E, E-isomer, as a pale yellow oil; $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) $3074,2924,2855,1725,1639,1579,1477,1438$,

911, 738 and $689 ; \delta_{\mathrm{H}} 7.56-7.50(\mathrm{~m}, 2 \times$ aryl $=\mathrm{CH}), 7.44-7.36$ ($\mathrm{m}, 3 \times$ aryl $=\mathrm{CH}$), $5.94-5.79\left(\mathrm{~m}, \mathrm{C} H=\mathrm{CH}_{2}\right), 5.51-5.28(\mathrm{~m}$, $\mathrm{CH}=\mathrm{CH}), 5.21-5.12(\mathrm{~m},=\mathrm{CH}), 5.08-4.96\left(\mathrm{~m},=\mathrm{CH}_{2}\right), 2.75(\mathrm{t}, J$ 7.4, CH_{2}), 2.18-2.04 (m, $\left.5 \times \mathrm{CH}_{2}\right), 1.84-1.75\left(\mathrm{~m}, \mathrm{CH}_{2}\right)$ and $1.62\left(\mathrm{~s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}(Z, E$-isomer) $200.1(\mathrm{CO})$, $138.6(=\mathrm{CH})$, 135.7 ($2 \times$ aryl $=\mathrm{CH}$), 134.9 (quat. C), $130.9(=\mathrm{CH}), 129.3(2 \times$ aryl $=\mathrm{CH}), 128.8(\operatorname{aryl}=\mathrm{CH}), 128.0(=\mathrm{CH})$, 126.4 (quat. C), 124.1 $(=\mathrm{CH}), 114.4\left(=\mathrm{CH}_{2}\right), 46.8\left(\mathrm{CH}_{2}\right), 39.5\left(\mathrm{CH}_{2}\right), 33.9\left(\mathrm{CH}_{2}\right), 27.4$ $\left(\mathrm{CH}_{2}\right), 26.2\left(\mathrm{CH}_{2}\right), 25.8\left(\mathrm{CH}_{2}\right), 25.2\left(\mathrm{CH}_{2}\right)$ and $16.0\left(\mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}$ (\%) 219 (10), 201 (20), 177 (10), 159 (11), 158 (9), 157 (16), 151 (13), 136 (10) and $135(100)$ (Found: C, 67.4; H, 7.7. $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{OSe}$ requires $\mathrm{C}, 67.2 ; \mathrm{H}, 7.5 \%$).

Reductive cyclisation of the $S e$-phenylselenoate 26. Cyclisation of the title ester according to the general procedure ${ }^{1}$ afforded a mixture of products, separation of which by flash chromatography over silica gel (light petroleum \rightarrow light petroleum-ether, $50: 1$) gave: (i) the tricyclic ketone $27(31 \%) ; v_{\max } / \mathrm{cm}^{-1}$ (film) 2932, 2869, 1738sh, 1710, 1454, 1372 and $1313 ; \delta_{\mathrm{C}} 212.6$ (CO), $53.5(\mathrm{CH}), 49.5(\mathrm{CH}), 46.3(\mathrm{CH}), 45.4(\mathrm{CH}), 42.0\left(\mathrm{CH}_{2}\right), 32.6$ $\left(\mathrm{CH}_{2}\right), 32.3\left(\mathrm{CH}_{2}\right), 29.8\left(\mathrm{CH}_{2}\right), 29.3\left(\mathrm{CH}_{3}\right), 26.1\left(\mathrm{CH}_{2}\right), 25.6$ $\left(\mathrm{CH}_{2}\right), 17.4\left(\mathrm{CH}_{2}\right)$ and $14.9\left(\mathrm{CH}_{3}\right)$ (Found: C, $81.9 ; \mathrm{H}, 11.3 \%$; M^{+}, 220.1798. $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}$ requires $\mathrm{C}, 81.8 ; \mathrm{H}, 11.0 \% ; \mathrm{M}^{+}$, 220.1827) and (ii) the bicyclic ketone $\mathbf{2 8},(37 \%)$; $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3075, 2936, 2869, 1705, 1640, 1462, 1377, 1315, 1255, 1172, 993 and $909 ; \delta_{\mathrm{H}} 5.79-5.69(\mathrm{ddt}, J 17.2,10.2$ and $6.7,=\mathrm{CH}), 4.93(\mathrm{dm}$, $J 17.2 \mathrm{~Hz},=\mathrm{CHH}), 4.90(\mathrm{dm}, J 10.2,=\mathrm{CHH}), 2.89-2.78(\mathrm{~m}$, CH), 2.32-2.17 ($2 \mathrm{H}, \mathrm{m}$), 2.15-1.09 (15 H , complex series of m) and $0.86\left(\mathrm{~s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}} 215.3(\mathrm{CO}), 138.8(=\mathrm{CH}), 114.4\left(=\mathrm{CH}_{2}\right)$, $51.8(\mathrm{CH}), 51.6(\mathrm{CH}), 45.6$ (quat. C), $38.0\left(\mathrm{CH}_{2}\right) 36.6\left(\mathrm{CH}_{2}\right)$, $36.1\left(\mathrm{CH}_{2}\right), 34.6\left(\mathrm{CH}_{2}\right), 25.8\left(\mathrm{CH}_{2}\right), 25.3\left(\mathrm{CH}_{3}\right), 24.4$ $\left(2 \times \mathrm{CH}_{2}\right)$ and $23.2\left(\mathrm{CH}_{2}\right) ; m / z 220.1805\left(\mathrm{M}^{+} . \mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}\right.$ requires $M^{+}, 220.1827$).

Se-Phenyl (5Z,9E)-9,13-dimethytetradeca-5,9,13-trieneselenoate 33. The title ester was prepared starting from 4-methylpent-4-enal 29, according to all the general procedures described earlier. ${ }^{1}$ Thus, a Grignard reaction between the aldehyde 29 and propenylmagnesium bromide first led (44%) to 2,6-dimethylhepta-1,6-dienol 30; ${ }^{12} \quad v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3354 br $(\mathrm{OH}), 3073,2970,2940,1650,1446,1374,1064,1022,1000$ and $890 ; \delta_{\mathrm{H}} 5.02-4.78\left(\mathrm{~m}, 2 \times=\mathrm{CH}_{2}\right), 4.14(\mathrm{t}, J 6.4, \mathrm{CHO}), 2.18-$ $2.03\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 1.94(\mathrm{br} \mathrm{s}, \mathrm{OH}), 1.81_{5}\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 1.81_{0}\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$ and $1.78-1.71\left(\mathrm{~m}, \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}} 147.4$ (quat. C), 145.6 (quat. C), $111.1\left(=\mathrm{CH}_{2}\right), 110.0\left(=\mathrm{CH}_{2}\right), 75.5(\mathrm{CHOH}), 33.7\left(\mathrm{CH}_{2}\right), 32.7$ $\left(\mathrm{CH}_{2}\right), 22.5\left(\mathrm{CH}_{3}\right)$ and $17.5\left(\mathrm{CH}_{3}\right)$, which by Claisen rearrangement was next converted into ($4 E$)-4,8-dimethylnona-4,8-dienal $31(98 \%) ;{ }^{13} v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3074, 2967, 2932, 2854, $2717,1726,1684,1649,1446,1374$ and $887 ; \delta_{\mathrm{H}} 9.68(\mathrm{t}, J 2.0$, CHO), $5.11-5.06(\mathrm{~m},=\mathrm{CH}), 4.63(\mathrm{~s},=\mathrm{CHH}), 4.59(\mathrm{~s},=\mathrm{CH} H)$, $2.48-2.41\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 2.28-2.22\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 2.10-1.93(\mathrm{~m}$, $\left.2 \times \mathrm{CH}_{2}\right), 1.64\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$ and $1.55\left(\mathrm{~s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}} 202.6(\mathrm{CO}), 145.4$ (quat. C), 133.0 (quat. C), $125.0(=\mathrm{CH}), 109.9\left(=\mathrm{CH}_{2}\right), 42.0$ $\left(\mathrm{CH}_{2}\right), 37.5\left(\mathrm{CH}_{2}\right), 31.7\left(\mathrm{CH}_{2}\right), 26.0\left(\mathrm{CH}_{2}\right), 22.3\left(\mathrm{CH}_{3}\right)$ and 15.2 $\left(\mathrm{CH}_{3}\right)$ via the corresponding vinyl ether; $v_{\text {max }} / \mathrm{cm}^{-1}(\mathrm{film}) 3074$, 2971, 2948, 1649, 1635, 1614, 1448, 1374, 1318, 1195, 1166, 1067, 892 and $828 ; \delta_{\mathrm{H}} 6.37$ (dd, $J 14.0$ and $6.4, \mathrm{CH}=\mathrm{CH}_{2}$), 5.08 $5.00\left(\mathrm{~m},=\mathrm{CH}_{2}\right), 4.83(\mathrm{br} \mathrm{s},=\mathrm{CHH}), 4.79(\mathrm{br} \mathrm{s},=\mathrm{CH} H), 4.42(\mathrm{~s}$, $=\mathrm{CHH}$), $4.37(\mathrm{~s},=\mathrm{CH} H), 4.18(\mathrm{t}, J 6.8, \mathrm{OCH}), 2.19-2.05(\mathrm{~m}$, $\left.\mathrm{CH}_{2}\right), 1.97-1.85\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 1.82\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$ and $1.77\left(\mathrm{~s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}$ $150.5(=\mathrm{CH}), 145.0$ (quat. C), 144.1 (quat. C), $113.4\left(=\mathrm{CH}_{2}\right)$, $110.2\left(=\mathrm{CH}_{2}\right), 88.7\left(=\mathrm{CH}_{2}\right), 83.1(\mathrm{OCH}), 33.5\left(\mathrm{CH}_{2}\right), 31.3$ $\left(\mathrm{CH}_{2}\right), 22.5\left(\mathrm{CH}_{3}\right)$ and $16.9\left(\mathrm{CH}_{3}\right)$.
A Wittig reaction between the aldehyde 31 and the ylide from 4-carboxybutyl(triphenyl)phosphonium bromide, according to the general procedure, ${ }^{1}$ next led to ($5 Z, 9 E$)-9,13-di-methyltetradeca-5,9,13-trienoic acid 32 (62%), containing $c a$. 10% of the E, E-isomer; $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) $3500-2500 \mathrm{br}\left(\mathrm{CO}_{2} \mathrm{H}\right)$, $1709,1649,1443,1241$ and $887 ; \delta_{\mathrm{H}}\left(\mathrm{br} \mathrm{s}, \mathrm{CO}_{2} \mathrm{H}\right), 5.51-5.41$ (m, $\mathrm{CH}=\mathrm{CH}), 5.24(\mathrm{~m},=\mathrm{CH}), 4.81(\mathrm{~s},=\mathrm{CHH}), 4.78(\mathrm{~s},=\mathrm{CHH}), 2.46$
($\mathrm{t}, J 7.6, \mathrm{CH}_{2}$), 2.24-2.13 (m, $\left.5 \times \mathrm{CH}_{2}\right), 1.83\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 1.82-$ $1.77\left(\mathrm{~m}, \mathrm{CH}_{2}\right)$ and $1.71\left(\mathrm{~s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}} 181.0(\mathrm{CO}), 146.9$ (quat. C), 135.6 (quat. C), $131.4(=\mathrm{CH}), 128.8(=\mathrm{CH}), 125.0(=\mathrm{CH}), 110.4$ $\left(=\mathrm{CH}_{2}\right), 40.1\left(\mathrm{CH}_{2}\right), 38.4\left(\mathrm{CH}_{2}\right), 34.0\left(\mathrm{CH}_{2}\right), 27.0\left(\mathrm{CH}_{2}\right), 26.8$ $\left(\mathrm{CH}_{2}\right), 26.4\left(\mathrm{CH}_{2}\right), 25.2\left(\mathrm{CH}_{2}\right), 23.1\left(\mathrm{CH}_{3}\right)$ and $16.5\left(\mathrm{CH}_{3}\right)$. This compound was phenylselenylated in 48% yield, after chromatographic purification, to produce the $S e$-phenyl selenoate, a single stereoisomer, as a pale yellow oil; $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) $3073,3003,2929,2854,1724,1649,1580,1477$, $1439,886,737$ and $689 ; \delta_{\mathrm{H}} 7.64-7.61(\mathrm{~m}, 2 \times$ aryl $=\mathrm{CH}), 7.50-$ $7.45(\mathrm{~m}, 3 \times \operatorname{aryl}=\mathrm{CH}), 5.58-5.38(2 \times \mathrm{dt}, J 10.8,6.9$ and 6.6 , $Z-\mathrm{CH}=\mathrm{CH}), 5.29-5.24(\mathrm{~m},=\mathrm{CH}), 4.84(\mathrm{~s},=\mathrm{CHH}), 4.81(\mathrm{~s}$, $=\mathrm{CH} H), 2.83\left(\mathrm{t}, \mathrm{J} 7.4, \mathrm{CH}_{2}\right), 2.25-2.14\left(\mathrm{~m}, 5 \times \mathrm{CH}_{2}\right), 1.93-1.82$ $\left(\mathrm{m}, \mathrm{CH}_{2}\right), 1.85\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$ and $1.74\left(\mathrm{~s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{c}} 200.4(\mathrm{CO}), 146.0$ (quat. C), $136.0(2 \times$ aryl $=\mathrm{CH}), 134.8$ (quat. C), $131.1(=\mathrm{CH})$, $129.5(2 \times$ aryl $=\mathrm{CH}), 129.0($ aryl $=\mathrm{CH}), 128.2(=\mathrm{CH}), 126.8$ (quat. C), $124.6(=\mathrm{CH}), 110.0\left(=\mathrm{CH}_{2}\right), 47.0\left(\mathrm{CH}_{2}\right), 39.7\left(\mathrm{CH}_{2}\right)$, $38.0\left(\mathrm{CH}_{2}\right), 26.44\left(\mathrm{CH}_{2}\right), 26.40\left(\mathrm{CH}_{2}\right), 26.0\left(\mathrm{CH}_{2}\right), 25.4\left(\mathrm{CH}_{2}\right)$, $22.7\left(\mathrm{CH}_{3}\right)$ and $16.2\left(\mathrm{CH}_{3}\right) ; m / z(\%) 233(9), 215(18), 177(14)$, 159 (13), 157 (10), 155 (8) and 149 (51) (Found: C, 68.0; H, 7.9. $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{OSe}$ requires C, $67.9 ; \mathrm{H}, 7.8 \%$).

Reductive cyclisation of the $S e$-phenyl selenoate 33. Cyclisation of the title ester according to the general procedure, ${ }^{1}$ followed by chromatography over silica gel (light petroleum \rightarrow light petroleum-ether, $50: 1$), gave: (i) the tricyclic ketone $34(31 \%)$ as a ca. 5:3 mixture of ring C methyl epimers; $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 2934, 2867, 1709, 1447, 1379, 1313, 1149 and 733; $\delta_{\mathrm{H}} 2.42-0.88$ (complex series of m); δ_{C} (major isomer 65) $213.1(\mathrm{CO}), 55.8(\mathrm{CH}), 51.2\left(\mathrm{CH}_{2}\right), 50.7(\mathrm{CH}), 43.7(\mathrm{CH}), 41.5$ $\left(\mathrm{CH}_{2}\right), 40.3\left(\mathrm{CH}_{2}\right), 35.8\left(\mathrm{CH}_{2}\right), 33.5$ (quat. C), $29.3\left(\mathrm{CH}_{2}\right), 27.0$ $(\mathrm{CH}), 26.4\left(\mathrm{CH}_{2}\right), 24.5\left(\mathrm{CH}_{2}\right), 22.8\left(\mathrm{CH}_{3}\right), 20.3\left(\mathrm{CH}_{2}\right)$ and 17.3 $\left(\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}$ (minor isomer 66) $213.3(\mathrm{CO}), 55.7(\mathrm{CH}), 50.9(\mathrm{CH})$, $48.2\left(\mathrm{CH}_{2}\right), 43.6(\mathrm{CH}), 41.4\left(\mathrm{CH}_{2}\right), 40.8\left(\mathrm{CH}_{2}\right), 33.9$ (quat. C), $32.3\left(\mathrm{CH}_{2}\right), 29.3\left(\mathrm{CH}_{2}\right), 26.4\left(\mathrm{CH}_{2}\right), 23.0(\mathrm{CH}) 21.8\left(\mathrm{CH}_{3}\right), 20.4$ $\left(\mathrm{CH}_{2}\right)$, $19.9\left(\mathrm{CH}_{2}\right)$ and $19.7\left(\mathrm{CH}_{3}\right) ; m / z 234.1976\left(\mathrm{M}^{+}\right.$. $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}$ requires $M^{+}, 234$.1984) and (ii) the bicyclic ketone 35 (47%); $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) $3072,2938,2869,1703,1649,1458,1376$ and $885 ; \delta_{\mathrm{H}} 4.63(\mathrm{~s},=\mathrm{CHH}), 4.59(\mathrm{~s},=\mathrm{CH} H), 1.64\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 0.86$ (s, CH_{3}) and 2.33-0.75 (complex series of m); $\delta_{\mathrm{C}} 215.3(\mathrm{CO})$, 145.8 (quat. C), $109.8\left(=\mathrm{CH}_{2}\right), 51.9(\mathrm{CH}), 51.6(\mathrm{CH}), 45.6$ (quat. C), $38.6\left(\mathrm{CH}_{2}\right), 38.0\left(\mathrm{CH}_{2}\right), 36.7\left(\mathrm{CH}_{2}\right), 36.1\left(\mathrm{CH}_{2}\right), 25.8\left(\mathrm{CH}_{2}\right)$, $25.3\left(\mathrm{CH}_{3}\right), 24.3\left(\mathrm{CH}_{2}\right), 23.2\left(\mathrm{CH}_{2}\right), 22.9\left(\mathrm{CH}_{2}\right)$ and $22.3\left(\mathrm{CH}_{3}\right)$; $m / z 234.1967\left(\mathrm{M}^{+} . \mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}\right.$ requires $\left.\mathrm{M}^{+}, 234.1984\right)$.

1-Methoxy-5,9,13-trimethyltetradeca-1,5,9,13-tetraene 38. A set of identical Grignard and Claisen rearrangements identical with those described earlier were used to convert the aldehyde 31 into ($6 E$)-2,6,10-trimethylundeca-1,6,10-trien-3-ol 36 $(66 \%){ }^{13,14} \quad v_{\max } / \mathrm{cm}^{1}$ (film) 3384br (OH), 3073, 2969, 2937, 1649, 1447, 1374, 1059 and 887; $\delta_{\mathrm{H}} 4.98-4.93(\mathrm{~m},=\mathrm{CH}), 4.73-$ $4.72(\mathrm{~m},=\mathrm{CHH}), 4.63-4.62(\mathrm{~m},=\mathrm{CH} H), 4.49-4.48(\mathrm{~m},=\mathrm{CHH})$, 4.47-4.46 (m, $=\mathrm{CHH}$), 3.83 (t, J 6.4, CHO), 1.96-1.75 (m, $\left.3 \times \mathrm{CH}_{2}\right), 1.51_{1}\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 1.50_{8}\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 1.49-1.38\left(\mathrm{~m}, \mathrm{CH}_{2}\right)$ and $1.41\left(\mathrm{~s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}} 147.5$ (quat. C), 145.8 (quat. C), 134.9 (quat. C), $124.5(=\mathrm{CH}), 111.0\left(=\mathrm{CH}_{2}\right), 109.8\left(=\mathrm{CH}_{2}\right), 75.6$ $(\mathrm{CHOH}), 37.7\left(\mathrm{CH}_{2}\right), 35.6\left(\mathrm{CH}_{2}\right), 33.1\left(\mathrm{CH}_{2}\right), 26.1\left(\mathrm{CH}_{2}\right), 22.4$ $\left(\mathrm{CH}_{3}\right), 17.6\left(\mathrm{CH}_{3}\right)$ and $16.0\left(\mathrm{CH}_{3}\right)$ and also into $(4 E, 8 E)-4,8$, 12-trimethyltrideca-4,8,12-trienal $37 \quad(93 \%) ;{ }^{15} \quad v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3073, 2967, 2918, 2853, 2716, 1727, 1649, 1445, 1384 and $886 ; \delta_{\mathbf{H}}$ $9.82(\mathrm{t}, J, 1.8, \mathrm{CHO}), 5.23-5.18(\mathrm{~m}, 2 \times=\mathrm{CH}), 4.78(\mathrm{~s},=\mathrm{CHH})$, $4.75(\mathrm{~s},=\mathrm{CH} H), 2.61-2.55\left(\mathrm{~m}, \mathrm{CH}_{2}\right) 2.44-2.36\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 2.19-$ $1.90\left(\mathrm{~m}, 4 \times \mathrm{CH}_{2}\right), 1.80\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 1.69\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$ and $1.68(\mathrm{~s}$, CH_{3}); $\delta_{\mathrm{C}} 202.9146 .1$ (quat. C), 135.1 (quat. C), 133.2 (quat. C), $125.7(=\mathrm{CH}), 124.7(=\mathrm{CH}), 110.2\left(=\mathrm{CH}_{2}\right), 42.5\left(\mathrm{CH}_{2}\right), 39.8$ $\left(\mathrm{CH}_{2}\right), 38.2\left(\mathrm{CH}_{2}\right), 32.2\left(\mathrm{CH}_{2}\right), 26.8\left(\mathrm{CH}_{2}\right), 26.5\left(\mathrm{CH}_{2}\right), 22.8$ $\left(\mathrm{CH}_{3}\right), 16.4\left(\mathrm{CH}_{3}\right)$ and $16.3\left(\mathrm{CH}_{3}\right)$. Lithium bis(trimethylsilyl)amide ($15.8 \mathrm{~cm}^{3}, 15.8 \mathrm{mmol}$) was added dropwise over 20 min to a stirred solution of methoxymethyl(triphenyl)phosphonium chloride ($5.6 \mathrm{~g}, 15.8 \mathrm{mmol}$) in THF ($35 \mathrm{~cm}^{3}$) under nitrogen at
$0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 1 h , after which a solution of the aldehyde $37(3.4 \mathrm{~g}, 14.4 \mathrm{mmol})$ in THF $\left(35 \mathrm{~cm}^{3}\right)$ was added dropwise over 30 min . The mixture was stirred at room temperature for 20 h and then quenched by cautious addition of saturated aqueous ammonium chloride. The aqueous phase was extracted with ether, and the combined ether extracts were dried and then evaporated under reduced pressure. The residue was purified by chromatography over silica gel (light petroleum-ether, 5:1) to give the vinyl ether 38 $(2.6 \mathrm{~g}, 68 \%)$, a ca. $3: 2$ mixture of the Z, E, E - and E, E, E-isomers, as an oil; $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3073, 3034, 2930, 2852, 1655, 1450, $1385,1210,1112,933$ and $886 ; \delta_{\mathrm{H}} 6.11$ and $5.67(2 \times \mathrm{d}, J 12.9$ and 6.3, $\mathrm{CH}=\mathrm{CH}), 4.95(\mathrm{~m}, 2 \times=\mathrm{CH}), 4.53(\mathrm{~s},=\mathrm{CHH}), 4.50(\mathrm{~s}$, $=\mathrm{CH} H), 3.39$ and $3.31\left(2 \times \mathrm{d}, J 2\right.$ and 1.3, $\left.\mathrm{OCH}_{3}\right), 2.10-1.75$ $\left(\mathrm{m}, 6 \times \mathrm{CH}_{2}\right), 1.55\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 1.43\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$ and $1.41\left(\mathrm{~s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}$ 146.9 and $145.9(=\mathrm{CHO}), 135.0_{9}$ and $135.0_{6}(=\mathrm{CMe}), 134.7$ and $134.4(=C \mathrm{Me})$, 124.5 and $124.3(=\mathrm{CH})$, 124.0 and $124.0(=\mathrm{CH})$, 109.7 and $109.7\left(=\mathrm{CH}_{2}\right), 106.5$ and $102.7(\mathrm{CH}=\mathrm{CHO}), 59.4$ and $55.7\left(\mathrm{OCH}_{3}\right), 40.9\left(\mathrm{CH}_{2}\right), 39.7\left(\mathrm{CH}_{2}\right), 39.6\left(\mathrm{CH}_{2}\right), 37.8$ $\left(2 \times \mathrm{CH}_{2}\right), 26.5_{4}\left(2 \times \mathrm{CH}_{2}\right), 26.4_{7}\left(\mathrm{CH}_{2}\right), 26.4\left(\mathrm{CH}_{2}\right), 26.2$ $\left(2 \times \mathrm{CH}_{2}\right), 23.4\left(\mathrm{CH}_{3}\right), 22.4\left(2 \times \mathrm{CH}_{3}\right), 22.3\left(\mathrm{CH}_{2}\right), 15.9$ $\left(2 \times \mathrm{CH}_{3}\right)$ and $15.8\left(\mathrm{CH}_{3}\right)$.

Methyl 5,9,13-trimethyltetradeca-5,9,13-trienoate 39a. A solution of the vinyl ether $38(2.5 \mathrm{~g}, 9.5 \mathrm{mmol})$ in dichloromethane $\left(20 \mathrm{~cm}^{3}\right)$ was rapidly added to a suspension of $\operatorname{PCC}(4.1 \mathrm{~g}, 19.0 \mathrm{mmol})$ in dichloromethane $\left(20 \mathrm{~cm}^{3}\right)$. After the mixture had been stirred at room temperature for 1.5 h it was diluted with ether $\left(40 \mathrm{~cm}^{3}\right)$. The supernatant liquid was poured into a beaker and the residue solid was then washed with ether ($3 \times 20 \mathrm{~cm}^{3}$). The combined etheral solutions were passed through a column of silica gel and magnesium sulfate, and then evaporated under reduced pressure. The residue was purified by flash chromatography over silica gel (light petroleum-ether, $5: 1)$ to give the ester $39 \mathrm{a}\left(1.9 \mathrm{~g}, 73 \%\right.$) as an oil; $v_{\text {max }} / \mathrm{cm}^{-1}($ film $)$ $3074,2934,2853,1742,1650,1436,1374,1209,1155$ and $887 ; \delta_{\mathrm{H}}$ $5.26-5.15(\mathrm{~m}, 2 \times=\mathrm{CH}), 4.80(\mathrm{~s},=\mathrm{CHH}), 4.77(\mathrm{~s},=\mathrm{CH} H), 3.76$ $\left(\mathrm{s}, \mathrm{OCH}_{3}\right), 2.36\left(\mathrm{t}, J 7.6, \mathrm{CH}_{2}\right), 2.21-1.94\left(\mathrm{~m}, 5 \times \mathrm{CH}_{2}\right), 1.90-$ $1.70\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 1.82\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 1.70\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$ and $1.68\left(\mathrm{~s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}$ 174.4 (CO), 146.1 (quat. C), 135.2 (quat. C), 134.0 (quat. C), $125.5(=\mathrm{CH})$, $124.4(=\mathrm{CH})$, $110.0\left(=\mathrm{CH}_{2}\right)$, $51.6\left(\mathrm{OCH}_{3}\right), 39.8$ $\left(\mathrm{CH}_{2}\right), 39.1\left(\mathrm{CH}_{2}\right), 38.0\left(\mathrm{CH}_{2}\right), 33.6\left(\mathrm{CH}_{2}\right), 26.8\left(\mathrm{CH}_{2}\right), 26.4$ $\left(\mathrm{CH}_{2}\right), 23.2\left(\mathrm{CH}_{2}\right), 22.7\left(\mathrm{CH}_{3}\right), 16.2\left(\mathrm{CH}_{3}\right)$ and $15.9\left(\mathrm{CH}_{3}\right)$.

5,9,13-Trimethyltetradeca-5,9,13-trienoic acid 39b. Potassium carbonate ($4.6 \mathrm{~g}, 33.5 \mathrm{mmol}$) was added to a solution of the trienoate $39 \mathrm{a}(1.9 \mathrm{~g}, 6.7 \mathrm{mmol})$ in aqueous methanol $(7 \% ; 46$ cm^{3}) and the mixture was then stirred and heated under reflux overnight. After it had cooled to room temperature, the reaction mixture was acidified with $2 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid, and extracted with ethyl acetate ($3 \times 35 \mathrm{~cm}^{3}$). The organic extracts were washed with brine ($35 \mathrm{~cm}^{3}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure. The residue was purified by flash chromatography over silica gel (light petroleum-ether, 5:1) to give the acid $\mathbf{3 9 b}(1.3 \mathrm{~g}, 76 \%)$ as an oil; $v_{\text {max }} / \mathrm{cm}^{-1}($ film $) 3500-2500 \mathrm{br}\left(\mathrm{CO}_{2} \mathrm{H}\right), 1710,1650,1443,1383$, 1275, 1243 and 886; $\delta_{\mathrm{H}} 10.2\left(\mathrm{br} \mathrm{s}, \mathrm{CO}_{2} \mathrm{H}\right), 5.29-5.10(\mathrm{~m}$, $2 \times=\mathrm{CH}), 4.80(\mathrm{~s},=\mathrm{CHH}), 4.78(\mathrm{~s},=\mathrm{CH} H), 2.41(\mathrm{t}, J 7.6$, $\left.\mathrm{CH}_{2} \mathrm{CO}\right), 2.34-1.90\left(\mathrm{~m}, 5 \times \mathrm{CH}_{2}\right), 1.89-1.65\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 1.82(\mathrm{~s}$, CH_{3}), $1.71\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$ and $1.69\left(\mathrm{~s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}} 181.6(\mathrm{CO}), 147.5$ (quat. C), 137.9 (quat. C), 136.1 (quat. C), $126.8(=\mathrm{CH}), 125.5$ $(=\mathrm{CH}), 111.0\left(=\mathrm{CH}_{2}\right), 40.9\left(\mathrm{CH}_{2}\right), 40.1\left(\mathrm{CH}_{2}\right), 39.1\left(\mathrm{CH}_{2}\right), 34.6$ $\left(\mathrm{CH}_{2}\right), 27.8\left(\mathrm{CH}_{2}\right), 27.5\left(\mathrm{CH}_{2}\right), 24.0\left(\mathrm{CH}_{2}\right), 23.8\left(\mathrm{CH}_{3}\right), 17.3$ $\left(\mathrm{CH}_{3}\right)$ and $17.0\left(\mathrm{CH}_{3}\right)$.

Se-Phenyl ($9 E, 13 E$)-5,9,13-trimethyltetradeca-5,9,13-trieneselenoate 40. The title ester was prepared according to the general procedure (68%), and showed: $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3073, 2930, 2854, 1725, 1649, 1580, 1478, 1439, 1374, 886, 738 and $689 ; \delta_{\mathrm{H}} 7.64-7.61(\mathrm{~m}, 2 \times$ aryl $=\mathrm{CH}), 7.60-7.43(\mathrm{~m}, 3 \times$ aryl
$=\mathrm{CH}), 5.30-5.20(\mathrm{~m}, 2 \times=\mathrm{CH}), 4.83(\mathrm{~s},=\mathrm{CHH}), 4.80(\mathrm{~s}$, $=\mathrm{CH} H), 2.77\left(\mathrm{t}, J 7.4, \mathrm{CH}_{2}\right), 2.30-2.00\left(\mathrm{~m}, 5 \times \mathrm{CH}_{2}\right), 1.93-1.78$ $\left(\mathrm{m}, \mathrm{CH}_{2}\right), 1.84\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 1.73\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$ and $1.70\left(\mathrm{~s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}$ 200.5 (CO), 145.8 (quat. C), $135.7(2 \times$ aryl $=\mathrm{CH}$), 134.9 (quat. C), 133.4 (quat. C), $129.3(2 \times$ aryl $=\mathrm{CH}), 128.8($ aryl $=\mathrm{CH})$, 126.5 (quat. C), $125.7(=\mathrm{CH}), 124.2(=\mathrm{CH}), 109.8\left(=\mathrm{CH}_{2}\right), 46.8$ $\left(\mathrm{CH}_{2}\right), 39.6\left(\mathrm{CH}_{2}\right), 38.5\left(\mathrm{CH}_{2}\right), 37.8\left(\mathrm{CH}_{2}\right), 26.5\left(\mathrm{CH}_{2}\right), 26.2$ $\left(\mathrm{CH}_{2}\right), 23.4\left(\mathrm{CH}_{2}\right), 22.5\left(\mathrm{CH}_{3}\right), 16.0\left(\mathrm{CH}_{3}\right)$ and $15.7\left(\mathrm{CH}_{3}\right) ; m / z$ (\%) 247 (19), 229 (12), 191 (11), 179 (12), 173 (12), 158 (12), 149 (17), 123 (31) and 81 (100) (Found: C, 68.8; H, 8.0. $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{OSe}$ requires $\mathrm{C}, 68.5 ; \mathrm{H}, 8.0 \%$).

Reductive cyclisation of the $\boldsymbol{S e}$-phenyl selenoate $\mathbf{4 0}$. Cyclisation of the title ester, according to the general procedure, followed by chromatography over silica gel (light petroleum \rightarrow light petroleum-ether, $50: 1$) led to: (i) the indanones 52 (18%) as a mixture of diastereoisomers; $\delta_{\mathrm{H}} 4.63-4.59\left(\mathrm{~m},=\mathrm{CH}_{2}\right)$, 2.59-0.61 (complex series of m), $1.64\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 0.82\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$ and $0.78\left(\mathrm{~s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}} 215.7$ and $215.5(\mathrm{CO}), 145.3$ (quat. C), 109.9 and $109.8\left(=\mathrm{CH}_{2}\right), 59.1$ and $58.7(\mathrm{CH}), 51.9,48.1$ and 47.9 (quat. C), 38.8 and $38.6\left(\mathrm{CH}_{2}\right)$, $37.4\left(\mathrm{CH}_{2}\right), 36.9\left(\mathrm{CH}_{2}\right), 36.4$ $\left(\mathrm{CH}_{2}\right), 35.6\left(\mathrm{CH}_{2}\right),\left[34.8\left(\mathrm{CH}_{2}\right)\right], 33.6\left(\mathrm{CH}_{2}\right),\left[30.1\left(\mathrm{CH}_{2}\right)\right]$, $29.0\left(\mathrm{CH}_{2}\right), 25.6\left(\mathrm{CH}_{2}\right), 24.6\left(\mathrm{CH}_{2}\right), 23.2\left(\mathrm{CH}_{2}\right), 22.8\left(\mathrm{CH}_{2}\right)$, $22.7\left(\mathrm{CH}_{2}\right), 22.3\left(\mathrm{CH}_{3}\right), 22.1\left(\mathrm{CH}_{2}\right), 21.3\left(\mathrm{CH}_{3}\right), 19.4\left(\mathrm{CH}_{3}\right)$, $19.0\left(\mathrm{CH}_{3}\right)$ and $18.4\left(\mathrm{CH}_{3}\right)$. Further chromatographic purification afforded essentially a single stereoisomer: $\delta_{\mathrm{C}} 215.5$ (CO), 145.3 (quat. C), $109.8\left(=\mathrm{CH}_{2}\right.$), $59.1(\mathrm{CH}), 51.9$ (quat. C), 48.1 (quat. C), $38.8\left(\mathrm{CH}_{2}\right), 36.9\left(\mathrm{CH}_{2}\right), 36.4\left(\mathrm{CH}_{2}\right), 35.6\left(\mathrm{CH}_{2}\right)$, $29.0\left(\mathrm{CH}_{2}\right), 25.6\left(\mathrm{CH}_{2}\right), 23.2\left(\mathrm{CH}_{2}\right), 22.7\left(\mathrm{CH}_{2}\right), 22.3\left(\mathrm{CH}_{3}\right)$, $21.3\left(\mathrm{CH}_{3}\right)$ and $18.4\left(\mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z} 248.2103\left(\mathrm{M}^{+} . \mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}\right.$ requires $M^{+}, 248.2140$) and (ii) a ca. $1: 1$ mixture of the epimeric tricyclic ketones 50 and $51(53 \%) ; v_{\max } / \mathrm{cm}^{-1}$ (film) 2953, 2844, 1712, 1454, 1383, 933 and $733 ; \delta_{\mathrm{H}} 2.52-0.72$ (very complex series of m), $1.01\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 0.89\left(\mathrm{~d}, \mathrm{~J} 6.6, \mathrm{CH}_{3}\right)$ and 0.76 (s, CH_{3}); $\delta_{\mathrm{C}} 213.4,43.0,34.7$ and 34.5 (all quat. C), $60.1_{6}, 60.1_{1}$, 56.7, 55.9, 27.7, and 27.3 (all CH), 54.9, 51.7, 41.5, 40.8, 40.7, $38.1,38.0,36.4,33.5,22.2,21.6,17.5,17.3$, and $16.9\left({ }_{(11)} \mathrm{CH}_{2}\right)$, 22.9, 22.7, 21.7, 20.6 and 13.6 (all CH_{3}); $m / z 248.2092\left(\mathrm{M}^{+}\right.$. $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}$ requires $M^{+}, 248.2140$). The 2,4-dinitrophenylhydrazone derivative of the tricyclic ketone was prepared in DMF, and several fractional crystallisations $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}\right)$ afforded very small samples of the enriched epimers. One of the epimers showed: $\delta_{\mathrm{H}} 11.16(\mathrm{~s}, \mathrm{NH}), 9.04(\mathrm{~d}, J 2.5$, aryl $=\mathrm{CH}), 8.20(\mathrm{dd}, J$ 9.8 and $2.5, \operatorname{aryl}=\mathrm{CH}), 7.90(\mathrm{~d}, J 9.8, \mathrm{aryl}=\mathrm{CH}), 2.79-2.73(1 \mathrm{H}$, m), 2.05-0.61 (complex series of m), $0.92\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 0.76(\mathrm{~d}, \mathrm{~J} 6.6$, CH_{3}) and 0.61 (s, CH_{3}); $\delta_{\mathrm{C}} 162.7$ (quat. C), 145.7 (quat. C), 137.4 (quat. C), $130.0(\operatorname{aryl}=\mathrm{CH}), 128.8$ (quat. C), 123.7 (aryl $=\mathrm{CH}), 116.5(\operatorname{aryl}=\mathrm{CH}), 56.0(\mathrm{CH}), 55.0\left(\mathrm{CH}_{2}\right), 54.9(\mathrm{CH}), 41.6$ $\left(\mathrm{CH}_{2}\right), 41.5$ (quat. C), $38.5\left(\mathrm{CH}_{2}\right), 36.6\left(\mathrm{CH}_{2}\right), 34.8$ (quat. C), $27.5(\mathrm{CH}), 26.9\left(\mathrm{CH}_{2}\right), 22.9\left(\mathrm{CH}_{3}\right), 21.7\left(\mathrm{CH}_{2}\right), 21.5\left(\mathrm{CH}_{2}\right), 20.8$ $\left(\mathrm{CH}_{3}\right), 19.5\left(\mathrm{CH}_{2}\right)$ and $13.9\left(\mathrm{CH}_{3}\right)$; the other epimer showed: δ_{H} 11.16 (s, NH), 9.04 (d, $J 2.6$, aryl $=\mathrm{CH}$), 8.21 (dd, $J 9.6$ and 2.6 , aryl $=\mathrm{CH}), 7.90(\mathrm{~d}, J 9.6$, aryl $=\mathrm{CH}), 2.78-2.74(1 \mathrm{H}, \mathrm{m}), 2.05-$ 0.61 (complex series of m), $1.01_{5}\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 1.01_{0}\left(\mathrm{~d}, J 7.6, \mathrm{CH}_{3}\right)$ and $0.64\left(\mathrm{~s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}} 162.7$ (quat. C), 145.7 (quat. C), 137.4 (quat. C), 130.0 (aryl $=\mathrm{CH}$), 128.8 (quat. C), 123.7 (aryl $=\mathrm{CH}$), $116.5(\operatorname{aryl}=\mathrm{CH}), 56.9(\mathrm{CH}), 54.8(\mathrm{CH}), 51.8\left(\mathrm{CH}_{2}\right), 42.3\left(\mathrm{CH}_{2}\right)$, $38.4\left(\mathrm{CH}_{2}\right), 35.0$ (quat. C), 34.8 (quat. C), $33.7\left(\mathrm{CH}_{2}\right), 28.0$ $(\mathrm{CH}), 26.9\left(\mathrm{CH}_{2}\right), 23.1\left(\mathrm{CH}_{3}\right), 21.9\left(\mathrm{CH}_{3}\right), 21.5\left(\mathrm{CH}_{2}\right), 19.0$ $\left(\mathrm{CH}_{2}\right), 17.5\left(\mathrm{CH}_{2}\right)$ and $13.9\left(\mathrm{CH}_{3}\right)$.
The mixture of 2,4-dinitrophenylhydrazones was recrystallised from dichloromethane-ether, to afford crystals which proved to be satisfactory for X-ray analysis.

X-Ray crystal structure determination of 2,4-dinitrophenylhydrazone derivative of tricyclic ketones $\mathbf{5 0}$ and 51

The derivative crystallised as a solid solution of two diastereoisomers, differing by the orientation of the ring $17-$ methyl group, in approximately equal amounts (see Fig. 1). All
the cyclohexane rings adopt chair conformations, with cisorientation of the $\mathrm{C}(15)$ and $\mathrm{C}(16)$ angular methyl groups. The hydrazone and nitro groups are essentially coplanar with the benzene ring. Such a conformation is stabilised by an intramolecular hydrogen bond, $\mathrm{N}(2)-\mathrm{H} \cdots \mathrm{O}(1)$ [$\mathrm{N} \cdots \mathrm{O}$ $2.59(1) \AA] ;[\mathrm{N}-\mathrm{H} 0.79(8), \mathrm{H} \cdots \mathrm{O} 1.98(8) \AA, \mathrm{N}-\mathrm{H}-\mathrm{O}$ angle of $\left.135(8)^{\circ}\right]$, which causes lengthening of the $\mathrm{N}(3)-\mathrm{O}(1)$ bond to $1.250(9) \AA$, versus the average of $1.214(9) \AA$ for the other three $\mathrm{N}-\mathrm{O}$ bonds. The $\mathrm{C}(1) \mathrm{N}(1) \mathrm{N}(2) \mathrm{C}(18)$ torsion angle of $-169.7(7)^{\circ}$ indicates significant twisting round the $\mathrm{N}-\mathrm{N}$ bond.

The single-crystal X-ray diffraction experiment was carried out on a CAD-4 four-circle diffractometer at room temperature.

Crystal data. $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{4}, M=428.532$ monoclinic, space group $P 2_{1} / n, a=17.214(2), b=6.012(1), c=22.800(4) \AA, \beta=$ 108.91(1),$~ U=2232.1(6) \AA^{3}$ (from 18 reflections with $\left.20<\theta<24^{\circ}\right), Z=4, D_{\mathrm{x}}=1.28 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=920, \mathrm{Ni}-$ filtered $\mathrm{Cu}-\mathrm{K} \alpha$ radiation $(\lambda=1.54178 \mathrm{~A}), U=7.2 \mathrm{~cm}^{-1}$. Orange plate-like crystal ($0.07 \times 0.18 \times 0.45 \mathrm{~mm}$) was obtained from the solvent (dichloromethane-ether, 1:2). The intensities of 3194 reflections, including 2281 independent, were measured in a $2 \theta / \omega$ scan mode $\left(\theta<50^{\circ}\right.$). The structure was solved by direct methods (SHELXS-86) ${ }^{16}$ and refined by fullmatrix least squares (SHELXL-93) ${ }^{17}$ against F^{2} of 2274 reflections with Chebyshev weighting scheme. The 17 -methyl group appeared to be disordered over two positions, A and B, the occupancies of which were refined to $0.54(1)$ and $0.46(1)$, and which correspond to two co-crystallised isomers. Oxygen atoms were refined with anisotropic displacement parameters; N, C and the hydrazone H atoms in isotropic approximation, and the rest of the H atoms were treated in riding model. The refinement of 153 variables converged at $R=\Sigma\left(F_{0}-\right.$ $\left.F_{\mathrm{c}}\right) / \Sigma\left(F_{\mathrm{o}}\right)-0.071$ for 899 (observed) reflections with $I>2 \sigma(I)$ and $R=0.233$ for all data. The final difference map exhibited the max. and min. residual electron density features of 0.29 and -0.22 e \AA^{-3}, respectively. Lists of atomic coordinates, thermal parameters, bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre.

(4E, $8 E, 12 E$)-4,8,12-Trimethylheptadeca-4,8,12,16-tetraenal

44. The aldehyde was produced from 2 -methylhepta-1,6-dien-1-ol 23 using three successive Claisen rearrangements. Thus, conversion of 23 into the corresponding vinyl ether followed by Claisen rearrangement first led to ($4 E$)-4-methylnona-4,8dienal 24c (95%)-see above for spectroscopic data. A Grignard reaction between 24 c and propenylmagnesium bromide next produced $\quad(6 E)$-2,6-dimethylundeca-1,6,10-trien-3-ol 41 (74%) ${ }^{14} v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3365br (OH), 3075, 2976, 2921, 2857 , 1641, 1446, 1374, 1063, 995 and 908 ; δ_{H} 5.96-5.86 (m, $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 5.27(\mathrm{~m},=\mathrm{CH}), 5.13-4.92\left(\mathrm{~m}, 2 \times=\mathrm{CH}_{2}\right), 4.13(\mathrm{t}, \mathrm{J}$ 6.4, CHO), 2.19-2.05 (m, $3 \times \mathrm{CH}_{2}$), 2.02-1.74 (m, CH_{2}), 1.82 (s, CH_{3}) and $1.71\left(\mathrm{~s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}} 147.4$ (quat. C), $138.6(=\mathrm{CH})$, 135.1 (quat. C), $124.2(=\mathrm{CH}), 114.4\left(=\mathrm{CH}_{2}\right), 111.0\left(=\mathrm{CH}_{2}\right), 75.5$ $(\mathrm{CHOH}), 35.6\left(\mathrm{CH}_{2}\right), 33.9\left(\mathrm{CH}_{2}\right), 33.1\left(\mathrm{CH}_{2}\right), 27.3\left(\mathrm{CH}_{2}\right), 17.5$ $\left(\mathrm{CH}_{3}\right)$ and $16.0\left(\mathrm{CH}_{3}\right)$ and a second Claisen rearrangement from the allyl alcohol 41 then led to ($4 E, 8 E$)-4,8-dimethyl-trideca-4,8,12-trienal 42 (71%); $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3076, 2919, 2853, 2717, 1727, 1640, 1444, 1384, 1119, 995 and $911 ; \delta_{\mathrm{H}} 9.83$ (br s, CHO), $5.96-5.80\left(\mathrm{~m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.30-5.15(\mathrm{~m}, 2 \times=\mathrm{CH})$, $5.09(\mathrm{~d}, J 19.8,=\mathrm{CHH}), 5.04(\mathrm{~d}, J 11.2,=\mathrm{CH} H), 2.62-2.50(\mathrm{~m}$, $\left.\mathrm{CH}_{2}\right), 2.50-2.30\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 2.30-1.95\left(\mathrm{~m}, 4 \times \mathrm{CH}_{2}\right), 1.70(\mathrm{~s}$, CH_{3}) and $1.68\left(\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}} 202.6(\mathrm{CO}), 138.7(=\mathrm{CH}), 135.0$ (quat. C), 132.8 (quat. C), $125.3(=\mathrm{CH}), 124.0(=\mathrm{CH}), 114.3\left(=\mathrm{CH}_{2}\right)$, $42.1\left(\mathrm{CH}_{2}\right), 39.4\left(\mathrm{CH}_{2}\right), 33.9\left(\mathrm{CH}_{2}\right), 31.8\left(\mathrm{CH}_{2}\right), 27.3\left(\mathrm{CH}_{2}\right)$, $26.4\left(\mathrm{CH}_{2}\right)$, $16.0\left(\mathrm{CH}_{3}\right)$ and $15.9\left(\mathrm{CH}_{3}\right)$. A second Grignard reaction leading to the allylic alcohol $43(58 \%)$; $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3363br (OH), 3075, 2922, 2856, 1641, 1448, 1382, 1065, 994 and 909; δ_{H} 6.02-5.82 (m, $\mathrm{CH}=\mathrm{CH}_{2}$), 5.35-4.95 (m, $2 \times=\mathrm{CH}+$
$\left.2 \times=\mathrm{CH}_{2}\right), 4.15(\mathrm{t}, \mathrm{J} 6.4, \mathrm{CHO}), 2.30-1.95\left(\mathrm{~m}, 5 \times \mathrm{CH}_{2}\right), 1.84$ $\left(\mathrm{s}, \mathrm{CH}_{3}\right), 1.73\left(2 \times \mathrm{CH}_{3}\right)$ and $1.90-1.65\left(\mathrm{~m}, \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}} 147.4$ (quat. C), $138.7(=\mathrm{CH}$), 135.2 (quat. C), 134.6 (quat. C), 124.6 $(=\mathrm{CH})$, $123.8(=\mathrm{CH})$, $114.3\left(=\mathrm{CH}_{2}\right)$, $111.0\left(=\mathrm{CH}_{2}\right)$, 75.6 $(\mathrm{CHOH}), 39.6\left(\mathrm{CH}_{2}\right), 35.7\left(\mathrm{CH}_{2}\right), 33.9\left(\mathrm{CH}_{2}\right), 33.0\left(\mathrm{CH}_{2}\right), 27.3$ $\left(\mathrm{CH}_{2}\right), 26.5\left(\mathrm{CH}_{2}\right), 17.6\left(\mathrm{CH}_{3}\right)$ and $16.0\left(2 \times \mathrm{CH}_{3}\right)$, followed by a third Claisen rearrangement finally gave the tetraenaldehyde $44(74 \%)^{18}$ which was used directly for the next stage without purification.
$(4 E, 8 E, 12 E)-4,8,12,16-T e t r a m e t h y l h e p t a d e c a-4,8,12,16-$ tetraenal 49. Addition of propenylmagnesium bromide to the trienal 37 first led to the allylic alcohol 48 (74%); $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3360br (OH), 3073, 2934, 1650, 1448, 1374, 1059 and 887; δ_{H} $5.23-5.18(\mathrm{~m}, 2 \times=\mathrm{CH}), 5.00(\mathrm{br} \mathrm{s},=\mathrm{CHH}), 4.89(\mathrm{br} \mathrm{s},=\mathrm{CH} H)$, $4.78(\mathrm{~s},=\mathrm{CHH}), 4.76(\mathrm{~s},=\mathrm{CHH}), 4.09(\mathrm{t}, J 6.3, \mathrm{CHO}), 2.31-2.00$ $\left(\mathrm{m}, 5 \times \mathrm{CH}_{2}\right), 1.90-1.60\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 1.80\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$ and 1.69 ($2 \times \mathrm{CH}_{3}$); $\delta_{\mathrm{C}} 147.4$ (quat. C), 145.5 (quat. C), 134.8 (quat. C), 134.5 (quat. C), $124.5(=\mathrm{CH}), 124.0(=\mathrm{CH}), 110.8\left(=\mathrm{CH}_{2}\right), 109.7$ $\left(=\mathrm{CH}_{2}\right), 75.4(\mathrm{CHOH}), 39.5\left(\mathrm{CH}_{2}\right), 37.7\left(\mathrm{CH}_{2}\right), 35.5\left(\mathrm{CH}_{2}\right)$, $33.0\left(\mathrm{CH}_{2}\right), 26.4\left(\mathrm{CH}_{2}\right), 26.1\left(\mathrm{CH}_{2}\right), 22.3\left(\mathrm{CH}_{3}\right), 17.4\left(\mathrm{CH}_{3}\right)$ and $15.8\left(2 \times \mathrm{CH}_{3}\right)$, which was then converted by Claisen rearrangement into the tetraenal $49(90 \%) ;{ }^{13,14} v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3073, 2966, 2921, 2853, 2717, 1728, 1649, 1445, 1383, 886 and $735 ; \delta_{\mathrm{H}} 9.84(\mathrm{t}, J 2.0, \mathrm{CHO}), 5.28-5.15(\mathrm{~m}, 3 \times=\mathrm{CH}), 4.80(\mathrm{~s}$, $=\mathrm{CHH}), 4.78(\mathrm{~s},=\mathrm{CH} H), 2.63-2.57\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 2.47-2.38(\mathrm{~m}$, $\left.\mathrm{CH}_{2}\right), 2.35-1.95\left(\mathrm{~m}, 6 \times \mathrm{CH}_{2}\right), 1.82\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 1.71\left(2 \times \mathrm{CH}_{3}\right)$ and $1.69\left(\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}} 202.6(\mathrm{CO}), 145.8$ (quat. C), 135.1 (quat. C), 134.6 (quat. C), 132.8 (quat. C), $125.4(=\mathrm{CH}), 124.4(=\mathrm{CH})$, $124.0(=\mathrm{CH}), 109.7\left(=\mathrm{CH}_{2}\right), 42.1\left(\mathrm{CH}_{2}\right), 39.7\left(\mathrm{CH}_{2}\right), 39.5$ $\left(\mathrm{CH}_{2}\right), 37.8\left(\mathrm{CH}_{2}\right), 31.8\left(\mathrm{CH}_{2}\right), 26.6\left(\mathrm{CH}_{2}\right), 26.5\left(\mathrm{CH}_{2}\right), 26.2$ $\left(\mathrm{CH}_{2}\right), 22.5\left(\mathrm{CH}_{3}\right), 16.0_{5}\left(\mathrm{CH}_{3}\right)$ and $16.0_{0}\left(2 \times \mathrm{CH}_{3}\right)$.

Se-Phenyl (5E,9E,13E)-5,9,13-trimethyloctadeca-5,9,13,17tetraeneselenoate 47a. According to the general procedures, a Wittig reaction between the aldehyde 44 and methoxymethyl(triphenyl)phosphoranylide first led to a ca. 3:2 mixture of the cis- and trans- isomers of the vinyl ether 45a (75%); $v_{\max } / \mathrm{cm}^{-1}$ (film) 3076, 3040, 2926, 2851, 1656, 1641, 1450, 1384, 1210, 1112 and $911 ; \delta_{\mathrm{H}} 6.11$ and 5.75-5.58 (d and m, $J 12.9$, $\mathrm{CH}=\mathrm{CH}$ and $\mathrm{CH}=\mathrm{CH}_{2}$), 5.03-4.75 ($\mathrm{m}, 3 \times=\mathrm{CH}+=\mathrm{CH}_{2}$), 3.39 and $3.31\left(\mathrm{OCH}_{3}\right), 2.05-1.85\left(\mathrm{~m}, 8 \times \mathrm{CH}_{2}\right), 1.82\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$, $1.51\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$ and $1.42\left(2 \times \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}} 146.9$ and 145.9 ($=$ CHOMe), $138.7\left(\mathrm{CH}=\mathrm{CH}_{2}\right.$), 135.4, 134.9 and 134.6 (quat. C), 124.6, 124.4, 124.24 124.1_{9}, and $123.8(=\mathrm{CH}), 114.3\left(=\mathrm{CH}_{2}\right)$, 106.5 and 102.7 ($\mathrm{CH}=\mathrm{CHOMe}$), 59.4 and $55.8\left(\mathrm{OCH}_{3}\right), 41.0$, 39.7, 39.6, 34.0, 32.5, 27.4, 26.6, 26.4 and $22.3\left(\mathrm{CH}_{2}\right), 23.3$, $16.0_{3}, 16.0_{0},\left(\mathrm{CH}_{3}\right), 15.9_{5}$ and $15.8_{1}\left(\mathrm{CH}_{3}\right)$. Oxidation of 45a using PCC in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ next led to the methyl ester 46a ($\mathrm{R}^{\prime}=$ $\mathrm{Me} ; 75 \%$); $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3076, 2922, 2852, 1742, 1640, 1437, 1382, 1245, 1210, 1156, 994 and $911 ; \delta_{\mathrm{H}} 5.88-5.75(\mathrm{~m}, \mathrm{C} H=$ CH_{2}), 5.15-5.08 (m, $3 \times=\mathrm{CH}$), $4.99(\mathrm{~d}, J 17.1,=\mathrm{CHH}), 4.94$ $(\mathrm{d}, J 10.2,=\mathrm{CH} H), 3.65\left(\mathrm{~s}, \mathrm{OCH}_{3}\right), 2.30-2.24\left(\mathrm{~m}, \mathrm{CH}_{2} \mathrm{CO}\right)$, 2.10-1.95 (m, $7 \times \mathrm{CH}_{2}$), 1.76-1.62 (m, CH_{2}), $1.60\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$, $1.59\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$ and $1.58\left(\mathrm{~s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}} 174.2(\mathrm{CO}), 138.7(=\mathrm{CH})$, 135.3 (quat. C), 134.8 (quat. C), 133.7 (quat. C), 125.3 (=CH), $124.3(=\mathrm{CH})$, $123.8(=\mathrm{CH})$, $114.3\left(=\mathrm{CH}_{2}\right)$, $51.4\left(\mathrm{OCH}_{3}\right), 39.6$ $\left(2 \times \mathrm{CH}_{2}\right), 38.9\left(\mathrm{CH}_{2}\right), 34.0\left(\mathrm{CH}_{2}\right), 33.4\left(\mathrm{CH}_{2}\right), 27.4\left(\mathrm{CH}_{2}\right)$, $26.6\left(2 \times \mathrm{CH}_{2}\right), 23.0\left(\mathrm{CH}_{2}\right), 16.0\left(2 \times \mathrm{CH}_{3}\right)$ and $15.7\left(\mathrm{CH}_{3}\right)$ which was then saponified to the corresponding carboxylic acid 46a ($\mathrm{R}^{\prime}=\mathrm{H} ; 73 \%$); $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3500-2500br ($\mathrm{CO}_{2} \mathrm{OH}$), 1710, 1640, 1441, 1414, 1384, 1286, 1243 and 911; $\delta_{\mathrm{H}} 9.90$ (br s, $\left.\mathrm{CO}_{2} \mathrm{H}\right), 6.00-5.83\left(\mathrm{~m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.28-5.18(\mathrm{~m}, 3 \times=\mathrm{CH}), 5.11$ $(\mathrm{d}, J$ 17.1, $=\mathrm{CHH}), 5.05(\mathrm{~d}, J$ 12.2, $=\mathrm{CH} H), 2.41(\mathrm{t}, J 7.4$, $\left.\mathrm{CH}_{2} \mathrm{CO}\right), 2.20-2.00\left(\mathrm{~m}, 7 \times \mathrm{CH}_{2}\right), 1.89-1.78\left(\mathrm{~m}, \mathrm{CH}_{2}\right)$ and 1.71 (br s, $3 \times \mathrm{CH}_{3}$); $\delta_{\mathrm{C}} 180.6(\mathrm{CO}), 138.8(=\mathrm{CH}), 135.5$ (quat. C), 134.9 (quat. C), 133.7 (quat. C), $125.6(=\mathrm{CH}), 124.4(=\mathrm{CH})$, $123.9(=\mathrm{CH}), 114.4\left(=\mathrm{CH}_{2}\right), 39.8\left(\mathrm{CH}_{2}\right), 39.7\left(\mathrm{CH}_{2}\right), 38.9$ $\left(\mathrm{CH}_{2}\right), 34.1\left(\mathrm{CH}_{2}\right), 33.5\left(\mathrm{CH}_{2}\right), 27.5\left(\mathrm{CH}_{2}\right), 26.7\left(2 \times \mathrm{CH}_{2}\right)$, $22.8\left(\mathrm{CH}_{2}\right), 16.1\left(2 \times \mathrm{CH}_{3}\right)$ and $15.8\left(\mathrm{CH}_{3}\right)$. Phenylselenyl-
ation of 46a $\left(\mathrm{R}^{\prime}=\mathrm{H}\right)$ finally gave the $S e$-phenyl selenoate 47 a (73%) as a pale yellow oil; $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) $3075,3060,2923$, $2854,1726,1640,1580,1478,1439,1383,1065,1021,999,911$ and 737; $\delta_{\mathrm{H}} 7.65-7.56(\mathrm{~m}, 2 \times \mathrm{aryl}=\mathrm{CH}), 7.56-7.45(\mathrm{~m}, 3 \times$ aryl $=\mathrm{CH}), 6.02-5.88\left(\mathrm{~m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.30-5.20(\mathrm{~m}, 3 \times=\mathrm{CH})$, $5.13(\mathrm{~d}, J 17.1,=\mathrm{CHH}), 5.08(\mathrm{~d}, J 10.9,=\mathrm{CH} H), 2.78(\mathrm{t}, J 7.1$, $\left.\mathrm{CH}_{2}\right), 2.30-2.00\left(\mathrm{~m}, 7 \times \mathrm{CH}_{2}\right), 1.98-1.72\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 1.74(\mathrm{~s}$, $\left.2 \times \mathrm{CH}_{3}\right)$ and $1.71\left(\mathrm{~s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{c}} 200.2(\mathrm{CO}), 138.7(=\mathrm{CH}), 135.7$ ($2 \times \operatorname{aryl}=\mathrm{CH}$), 135.3 (quat. C), 134.7 (quat. C), 133.3 (quat. C), $129.2(2 \times \operatorname{aryl}=\mathrm{CH}), 128.7(\operatorname{aryl}=\mathrm{CH}), 126.5$ (quat. C), $125.7(=\mathrm{CH}), 124.3(=\mathrm{CH}), 123.8(=\mathrm{CH}), 114.3\left(=\mathrm{CH}_{2}\right), 46.8$ $\left(\mathrm{CH}_{2}\right), 39.7\left(\mathrm{CH}_{2}\right), 39.6\left(\mathrm{CH}_{2}\right), 38.5\left(\mathrm{CH}_{2}\right), 34.0\left(\mathrm{CH}_{2}\right), 27.4$ $\left(\mathrm{CH}_{2}\right), 26.5_{4}\left(\mathrm{CH}_{2}\right), 26.4_{9}\left(\mathrm{CH}_{2}\right), 23.3\left(\mathrm{CH}_{2}\right), 16.0_{3}\left(\mathrm{CH}_{3}\right)$, $15.96\left(\mathrm{CH}_{3}\right)$ and $15.6\left(\mathrm{CH}_{3}\right) ; m / z 301(28), 283$ (7), 191 (25), 179 (19), 173 (17), 163 (9), 161 (13), 157 (14), 149 (11), 137 (12), 135 (20) and 81 (100) (Found: C, $71.0 ; \mathrm{H}, 8.6 . \mathrm{C}_{27} \mathrm{H}_{38} \mathrm{OSe}$ requires C, $70.9 ; \mathrm{H}, 8.4 \%$).

Se-Phenyl (5E,9E,13E)-5,9,13,17-tetramethyloctadeca$\mathbf{5 , 9 , 1 3}, 17$-tetraeneselenoate $\mathbf{4 7 b}$. The title ester was prepared from the tetraenal 49 using the general procedures, and proceeding via (i) the vinyl ether $\mathbf{4 5 b}(38 \%)$, obtained as a $c a$. 3:2 mixture of cis- and trans-isomers; $v_{\max } / \mathrm{cm}^{-1}$ (film) 3072, $3055,2928,2852,1655,1586,1449,1434,1383,1210,1111,886$, 743 and $696 ; \delta_{\mathrm{H}} 6.02$ and $5.58(2 \times \mathrm{d}, J 12.5$ and $6.3,=\mathrm{CHO})$, 4.92-4.80 ($\mathrm{m}, \mathrm{CH}=\mathrm{CHO}+3 \times=\mathrm{CH}$), $4.44(\mathrm{~s},=\mathrm{CHH}), 4.42(\mathrm{~s}$, $=\mathrm{CH} H), 3.30$ and $3.22(\mathrm{OMe}), 1.90-1.68\left(\mathrm{~m}, 8 \times \mathrm{CH}_{2}\right), 1.46(\mathrm{~s}$, CH_{3}), $1.35\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$ and $1.33\left(\mathrm{~s}, 2 \times \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}} 146.9$ and 145.9 $(=C H O M e), 137.3,137.1,135.1,134.9_{0}, 134.8_{6}, 134.7_{1}$ and 134.4 (quat. C), 133.9 and $133.6(=\mathrm{CH}), 128.7$, 128.5 and 128.4 $(=\mathrm{CH})$, 124.6, 124.4, 124.2 and $124.0(=\mathrm{CH})$, $109.8\left(=\mathrm{CH}_{2}\right)$, 106.5 and $102.8(\mathrm{CH}=\mathrm{CHO})$, 59.4 and $55.8\left(\mathrm{OCH}_{3}\right), 41.0,40.0$, 39.7, 39.6, 37.8, 26.6, 26.5, 26.4, 26.2 and $26.1\left(\mathrm{CH}_{2}\right), 23.4$, 22.5, 22.4, 16.0 and $15.8\left(\mathrm{CH}_{3}\right)$; (ii) the ester $\mathbf{4 6 b}\left(\mathrm{R}^{\prime}=\mathrm{Me}\right.$; $38 \%)$; $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) $3073,2920,1742,1649,1437,1374,1204$, 1155 and $886 ; \delta_{\mathrm{H}} 5.28-5.08(\mathrm{~m}, 3 \times=\mathrm{CH}), 4.80(\mathrm{~s},=\mathrm{CHH}), 4.77$ $(\mathrm{s},=\mathrm{CH} H), 3.76\left(\mathrm{~s}, \mathrm{OCH}_{3}\right), 2.36\left(\mathrm{t}, \mathrm{J} 7.4, \mathrm{CH}_{2} \mathrm{CO}\right), 2.30-1.90$ $\left(\mathrm{m}, 8 \times \mathrm{CH}_{2}\right), 1.88-1.65\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 1.82\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 1.71(\mathrm{~s}$, CH_{3}) and $1.69\left(\mathrm{~s}, 2 \times \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}} 174.5(\mathrm{CO}), 145.8$ (quat. C), 135.1 (quat. C), 134.7 (quat. C), 133.7 (quat. C), $125.3(=\mathrm{CH}$), $124.3(=\mathrm{CH})$, $124.0(=\mathrm{CH}), 109.7\left(=\mathrm{CH}_{2}\right), 51.4\left(\mathrm{OCH}_{3}\right), 39.6$ $\left(2 \times \mathrm{CH}_{2}\right), 38.9\left(\mathrm{CH}_{2}\right), 37.8\left(\mathrm{CH}_{2}\right), 33.4\left(\mathrm{CH}_{2}\right), 26.6(2 \times$ $\left.\mathrm{CH}_{2}\right), 26.2\left(\mathrm{CH}_{2}\right), 23.0\left(\mathrm{CH}_{2}\right), 22.4\left(\mathrm{CH}_{3}\right), 15.9\left(2 \times \mathrm{CH}_{3}\right)$ and $15.7\left(\mathrm{CH}_{3}\right)$ and (iii) the acid $46 \mathrm{~b}\left(\mathrm{R}^{\prime}=\mathrm{H} ; 73 \%\right)$; $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) $3500-2500 \mathrm{br}\left(\mathrm{CO}_{2} \mathrm{H}\right), 1709,1649,1442,1382,1274,1242$ and $886 ; \delta_{\mathrm{H}} 10.2\left(\mathrm{br} \mathrm{s}, \mathrm{CO}_{2} \mathrm{H}\right), 5.26-5.18(\mathrm{~m}, 3 \times=\mathrm{CH}), 4.80(\mathrm{~s}$, $=\mathrm{CHH}), 4.79(\mathrm{~s},=\mathrm{CH} H), 2.41\left(\mathrm{t}, J 7.4, \mathrm{CH}_{2} \mathrm{CO}\right), 2.30-2.00(\mathrm{~m}$, $\left.7 \times \mathrm{CH}_{2}\right), 1.89-1.75\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 1.83\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 1.71\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$ and $1.70\left(\mathrm{~s}, 2 \times \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}} 180.4(\mathrm{CO}), 145.8$ (quat. C), 135.1 (quat. C), 135.0 (quat. C), 134.7 (quat. C), $125.5(=\mathrm{CH}$), $124.3(=\mathrm{CH}$), $124.0(=\mathrm{CH}), 109.7\left(=\mathrm{CH}_{2}\right), 39.6_{4}\left(\mathrm{CH}_{2}\right), 39.59\left(\mathrm{CH}_{2}\right), 38.8$ $\left(\mathrm{CH}_{2}\right), 37.8\left(\mathrm{CH}_{2}\right), 33.3\left(\mathrm{CH}_{2}\right), 26.6\left(2 \times \mathrm{CH}_{2}\right), 26.2\left(\mathrm{CH}_{2}\right)$, $22.7\left(\mathrm{CH}_{2}\right)$, $22.4\left(\mathrm{CH}_{3}\right), 15.9\left(2 \times \mathrm{CH}_{3}\right)$ and $15.7\left(\mathrm{CH}_{3}\right)$. Phenylselenylation of the carboxylic acid 46b ($\mathrm{R}^{\prime}=\mathrm{H}$) then gave the ester 47b (53%) as a pale yellow oil; $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3073, 2927, 2852, 1726, 1649, 1580, 1478, 1439, 1382, 1022, 886, 737 and $689 ; \delta_{\mathrm{H}} 7.44-7.40(\mathrm{~m}, 2 \times$ aryl $=\mathrm{CH}), 7.31-7.27(\mathrm{~m}$, $3 \times$ aryl $=\mathrm{CH}), 5.10-5.00(\mathrm{~m}, 3 \times=\mathrm{CH}), 4.63(\mathrm{~s},=\mathrm{CHH}), 4.60$ $(\mathrm{s},=\mathrm{CH} H), 2.57\left(\mathrm{t}, J 7.4, \mathrm{CH}_{2} \mathrm{CO}\right), 2.10-1.80\left(\mathrm{~m}, 7 \times \mathrm{CH}_{2}\right)$, $1.76-1.55\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 1.64\left(\mathrm{~s}, \mathrm{CH}_{3}\right) 1.53\left(\mathrm{~s}, 2 \times \mathrm{CH}_{3}\right)$ and $1.50(\mathrm{~s}$, CH_{3}); $\delta_{\mathrm{C}} 200.2(\mathrm{CO}), 145.8$ (quat. C), $135.7(2 \times$ aryl $=\mathrm{CH}$), 135.1 (quat. C), 134.7 (quat. C), 133.3 (quat. C), $129.2(2 \times$ aryl $=\mathrm{CH}$), 128.7 (aryl $=\mathrm{CH}$), 126.5 (quat. C), $125.7(=\mathrm{CH}), 124.3$ $(=\mathrm{CH}), 124.0(=\mathrm{CH}), 109.7\left(=\mathrm{CH}_{2}\right), 46.7\left(\mathrm{CH}_{2}\right), 39.7\left(\mathrm{CH}_{2}\right)$, $39.6\left(\mathrm{CH}_{2}\right), 38.5\left(\mathrm{CH}_{2}\right), 37.8\left(\mathrm{CH}_{2}\right), 26.6\left(\mathrm{CH}_{2}\right), 26.5\left(\mathrm{CH}_{2}\right)$, $26.2\left(\mathrm{CH}_{2}\right), 23.3\left(\mathrm{CH}_{2}\right), 22.4\left(\mathrm{CH}_{3}\right), 16.0\left(2 \times \mathrm{CH}_{3}\right)$ and 15.6 $\left(\mathrm{CH}_{3}\right)$.

Reductive cyclisation of Se-phenyl selenoate 47a. Cyclisation of the title ester, according to the general conditions, gave the
bicyclic analogue of 52 (trace), but mainly a mixture of ring-D methyl epimers of the tetracyclic ketone 53 (78%) as an oil. Partial enrichment in one isomer was achieved by HPLC: δ_{H} 2.35-2.22 ($2 \mathrm{H}, \mathrm{m}$), 2.22-2.05 ($1 \mathrm{H}, \mathrm{m}$), 2.05-1.80 (4 H , $\mathrm{m}), 1.80-1.65(2 \mathrm{H}, \mathrm{m}), 1.65-1.54(2 \mathrm{H}, \mathrm{m}), 1.54-1.41(4 \mathrm{H}, \mathrm{m})$, $1.41-1.29(3 \mathrm{H}, \mathrm{m}), 1.29-1.14(2 \mathrm{H}, \mathrm{m}), 1.14-0.98(2 \mathrm{H}, \mathrm{m})$, $0.98-0.90(2 \mathrm{H}, \mathrm{m}), 0.87\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 0.87-0.75(1 \mathrm{H}, \mathrm{m}), 0.80(\mathrm{~s}+$ d, $J 7.3, \mathrm{CH}_{3}+\mathrm{CHCH}_{3}$) and $0.74\left(\mathrm{~s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}} 213.7(\mathrm{CO})$, $60.2(\mathrm{CH}), 59.8(\mathrm{CH}), 56.4(\mathrm{CH}), 43.9(\mathrm{CH}), 43.5$ (quat. C), 43.3 (quat. C), $40.9\left(\mathrm{CH}_{2}\right), 39.5\left(\mathrm{CH}_{2}\right), 38.4\left(\mathrm{CH}_{2}\right), 36.9$ (quat. C), $35.4\left(\mathrm{CH}_{2}\right), 30.0\left(\mathrm{CH}_{2}\right), 24.1\left(\mathrm{CH}_{3}\right), 22.4\left(\mathrm{CH}_{2}\right), 20.7\left(\mathrm{CH}_{2}\right)$, $19.0\left(\mathrm{CH}_{2}\right), 18.9\left(\mathrm{CH}_{3}\right), 17.0\left(\mathrm{CH}_{2}\right), 16.7\left(\mathrm{CH}_{3}\right)$ and 13.9 $\left(\mathrm{CH}_{3}\right)$.

Reductive cyclisation of the $S e$-phenyl selenoate 47 b . Cyclisation of the title ester, according to the general conditions, led to a mixture of ring-D methyl epimers of the tetracyclic ketone 54 (78%) as an oil. Partial enrichment in one isomer was achieved by HPLC; δ_{H} 2.33-2.22 (ca. $2 \mathrm{H}, \mathrm{m}$), 2.192.08 ($c a .1 \mathrm{H}, c a . \mathrm{dd}$), 2.03-1.85 ($c a .3 \mathrm{H}, \mathrm{m}$), 1.85-1.68 ($c a .2 \mathrm{H}$, m), 1.68-1.41 ($\mathbf{c a .} 7 \mathrm{H}, \mathrm{m}$), 1.41-1.14 ($с а .5 \mathrm{H}, \mathrm{m}$), 1.11-0.97 (ca. $2 \mathrm{H}, \mathrm{m}$), $0.97-0.75(c a .2 \mathrm{H}, \mathrm{m}), 0.92\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 0.83(\mathrm{~m}$, $\left.2 \times \mathrm{CH}_{3}\right)$ and $0.74\left(\mathrm{~s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}} 213.3(\mathrm{CO}), 56.2(\mathrm{CH}), 55.5$ $(\mathrm{CH}), 55.2\left(\mathrm{CH}_{2}\right),[54.2(\mathrm{CH})]$, [43.6 (quat. C)], $43.2(\mathrm{CH})$, $42.8\left(\mathrm{CH}_{2}\right), 41.6\left(\mathrm{CH}_{2}\right), 37.7\left(\mathrm{CH}_{2}\right), 36.6\left(\mathrm{CH}_{2}\right), 36.5($ quat. C), 34.7 (quat. C), 34.5 (quat. C), $29.4\left(\mathrm{CH}_{2}\right), 27.6(\mathrm{CH}), 26.6$ $\left(\mathrm{CH}_{2}\right), 23.3\left(\mathrm{CH}_{3}\right), 22.9\left(\mathrm{CH}_{3}\right), 21.8\left(\mathrm{CH}_{3}\right), 21.1\left(\mathrm{CH}_{2}\right), 21.0$ $\left(\mathrm{CH}_{2}\right), 20.2\left(\mathrm{CH}_{2}\right)$ and $13.7\left(\mathrm{CH}_{3}\right)$.

Acknowledgements

We thank the People's Republic of China for an award (to L. C.) under the Sino-British Friendship Scholarship Scheme, and the British Council for financial support.

References

1 L. Chen, G. B. Gill, G. Pattenden and H. Simonian, J. Chem. Soc., Perkin Trans. 1, 1996, immediately preceding paper; preliminary
communication: L. Chen, G. B. Gill and G. Pattenden, Tetrahedron Lett., 1994, 35, 2593.
2 J. K. Whitesell and M. A. Minton, Stereochemical Analysis of Alicyclic Compounds by C-13 NMR Spectroscopy, Chapman and Hall, London, 1987.
3 D. K. Dalling and D. M. Grant, J. Am. Chem. Soc., 1974, 96, 1827; F. W. Wehrli and T. Wirthlin, Interpretation of C-13 NMR Spectra, Heyden, London 1976, p. 44.
4 T. Terasawa, Y. Yoshimura and K. Tori, J. Chem. Soc., Perkin Trans. 1, 1983, 903.
5 For contemporaneous studies of radical mediated approaches to steroid ring constructions see details in ref. 1, and also P. A. Zoretic, Z. Shen, M. Wang and A. A. Ribeiro, Tetrahedron Lett., 1995, 36, 2925; T. Takahashi, W. Katouda, Y. Sakamoto, S. Tomida and H. Yamada, Tetrahedron Lett., 1995, 36, 2273.

6 W. Oppolzer, K. Bättig and T. Hudlicky, Tetrahedron, 1981, 37, 4359.

7 J. Tsuji, K. Masaoka, T. Takahashi, A. Suzuki and N. Miyaura, Bull. Chem. Soc. Jpn., 1977, 50, 2507.
8 H. J. Bestmann, K. M. Koschatzky and O. Vostrowsky, Liebigs Ann. Chem., 1982, 1478.
9 P. A. Zoretic, X. Weng and M. L. Caspar, Tetrahedron Lett., 1991, 32, 4819; P. A. Zoretic, M. Ramchandani and M. L. Caspar, Synth. Commun., 1991, 21, 915.
10 R. I. Trust and R. E. Ireland, Org. Synth., 1973, 53, 116.
11 R. E. Ireland, T. C. McKenzie and R. I. Trust, J. Org. Chem., 1975, 40, 1007.
12 E. S. Rao and J. S. Yadav, Indian J. Chem., Sect. B, 1986, 25, 1174.
13 W. S. Johnson, L. Werthemann, W. R. Bartlett, T. J. Brocksom, T.-t. Li, D. J. Faulkner and M. R. Petersen, J. Am. Chem. Soc., 1970, 92, 741; W. S. Johnson, S. J. Telfer, S. Cheng and U. Schubert, J. Am. Chem. Soc., 1987, 109, 2517.

14 Cf. W. S. Johnson, B. Chenera, F. S. Tham and R. K. Kullnig, J. Am. Chem. Soc., 1993, 115, 493.

15 A. V. Semenovski, V. L. Mizyuk, V. N. Odinokov, V. R. Akhunova and G. A. Tolstikov, Izv. Akad. Nauk SSSR, Ser. Khim., 1981, 821 (Chem. Abstr., 1981, 95, 98053d).
16 G. U. Sheldrick, Acta Crystallogr., Sect. A, 1990, 46, 467.
17 G. U. Sheldrick, SHELXL-93, University of Göttingen, Germany, 1993.

